Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T09:01:50.771Z Has data issue: false hasContentIssue false

Membranes and Transport Systems in Plants: An Overview

Published online by Cambridge University Press:  12 June 2017

Donald P. Briskin*
Affiliation:
Dep. Agron., Univ. Illinois, 1201 W. Gregory Dr., Urbana, IL 61801

Abstract

Membranes define the outer boundary of the living protoplast and the internal compartmentation of plant cells. From a structural point of view, membranes consist of a lipid bilayer and proteins essential for functions such as solute transport, signal transduction, and numerous metabolic reactions. While membranes can represent a significant barrier to the free movement of many solutes, those with sufficient lipid solubility may move across membranes by dissolving into the lipid bilayer. However, selective membrane transport is generally observed for hydrophilic solutes such as mineral nutrients and cell metabolites. Such selective transport requires an input of metabolic energy, and in plants this occurs via the production of proton electrochemical gradients across the membrane by substrate- (ex. ATP, PPi) driven proton pumps. Selective solute transport is then mediated by membrane-associated secondary transport systems which utilize the proton electrochemical gradient to drive the transport process. This review of membrane structure and transport system function provides a background for a further examination of herbicide interactions with plant membranes.

Type
Special Topics
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Baker, D. A. and Hall, J. L. 1988. Introduction and general principles. Pages 127 in Baker, D. A. and Hall, J. L., eds. Solute Transport in Plant Cells and Tissues. Loughman Scientific and Technical, U.K. Google Scholar
2. Blobel, G. 1980. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. U.S.A. 77:14961500.Google Scholar
3. Blumwald, E. and Poole, R. J. 1985 Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris . Plant Physiol. 78:163167.CrossRefGoogle ScholarPubMed
4. Blumwald, E. and Poole, R. J. 1986. Kinetics of Ca2+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris . Plant Physiol. 80:727731.Google Scholar
5. Briskin, D. P. and Hanson, J. B. 1992. How does the plant plasma membrane H+-ATPase pump protons? J. Exp. Bot. 43:269289.CrossRefGoogle Scholar
6. Briskin, D. P., Basu, S., and Ho, I. 1992. Studies on the reaction mechanism and transport function of P-type ATPases associated with the plant plasma membrane. Pages 1324 in Cooke, D. T. and Clarkson, D. T., eds. Transport and Receptor Proteins of Plant Membranes. Plenum Press, New York.CrossRefGoogle Scholar
7. Bush, D. R. 1992. The protein-sucrose symport. Photosyn. Res. 32:155165.Google Scholar
8. Chodera, A. J. and Briskin, D. P. 1990. Chlorate transport in isolated tonoplast vesicles from red beet (Beta vulgaris L.) storage tissue. Plant Sci. 67:151160.Google Scholar
9. Clarkson, D. T. 1988. Movement of ions across roots. Pages 251304 in Baker, D. A. and Hall, J. L. eds. Solute Transport in Plant Cells and Tissues. Loughman Scientific and Technical, U.K. Google Scholar
10. Danielli, J. F. and Davson, H. A. 1935. A contribution to the theory of the permeability of thin films. J. Cell. Comp. Physiol. 5:495508.Google Scholar
11. Douce, R. 1985. Mitochondria in Higher Plants: Structure, Function and Biogenesis. Academic Press, Orlando, FL.Google Scholar
12. Emons, A. M. C. and M. M. A. 1992. Do microtubules orient plant cell wall microfibrils?. Physiol. Plant. 84:486493.Google Scholar
13. Evans, D. E., Briars, S.-A., and Williams, L. E. 1991. Active calcium transport by plant membranes. J. Exp. Bot. 42:285303.CrossRefGoogle Scholar
14. Getz, H. P. 1991. Sucrose transport in tonoplast vesicles of red beet roots is linked to ATP hydrolysis. Planta 185:261268.CrossRefGoogle ScholarPubMed
15. Gorter, E. and Grendel, F. 1925. On bimolecular layers of lipoids on the chromocytes of the blood. J. Exp. Med. 41:439443.CrossRefGoogle ScholarPubMed
16. Hartmann, M.-A. and Beneviste, P. 1987. Plant membrane sterols: isolation, identification and biosynthesis. Methods Enzymol. 148:632650.CrossRefGoogle Scholar
17. Hedrich, R. and Schroeder, J. I. 1989. The physiology of ion channels and electrogenic pumps in higher plants. Annu. Rev. Plant Physiol. 40:539569.CrossRefGoogle Scholar
18. Humphreys, T. H. 1988. Phloem transport—with emphasis on loading and unloading. Pages 305345 in Baker, D. A. and Hall, J. L., eds. Solute Transport in Plant Cells and Tissues. Loughman Scientific and Technical, U.K. Google Scholar
19. Jain, M. K. and Zakim, D. 1987. The spontaneous incorporation of proteins into preformed bilayers. Biochim. Biophys. Acta 906:3368.CrossRefGoogle ScholarPubMed
20. Jennings, M. L. 1989. Topography of membrane proteins. Annu. Rev. Biochem. 58:9991027.CrossRefGoogle ScholarPubMed
21. Kauss, H. 1990. Role of the plasma membrane in host-pathogen interactions. Pages 320350 in Larsson, C. and Møller, I., eds. The Plant Plasma Membrane. Structure, Function and Molecular Biology. Springer-Verlag, Berlin.Google Scholar
22. Larsson, C., Møller, I. M., and Widell, S. 1990. Introduction to the plant plasma membrane—its molecular composition and organization. Pages 115 in Larsson, C. and Møller, I. M., eds. The Plant Plasma Membrane—Structure, Function and Molecular Biology. Springer-Verlag, Berlin.CrossRefGoogle Scholar
23. Lenard, J. and Singer, S. J. 1966. Protein conformation in cell membrane preparations as studies by optical rotary dispersion and circular dichroism. Proc. Nat. Acad. Sci., U.S.A., 56:18281835.CrossRefGoogle Scholar
24. Li, Z.-C. and Bush, D. R. 1990. ΔpH-dependent amino acid transport into plasma membrane vesicles isolated from sugar beet leaves. I. Evidence for carrier-mediated, electrogenic flux through multiple transport systems. Plant Physiol. 94:268277.CrossRefGoogle Scholar
25. Lucas, W. J. and Kochian, L. V. 1988. Mechanisms of ion transport in plants: K+ as an example. Pages 219232 in Crane, F. L., Morré, D. J., and Löw, H., eds. Plasma Membrane Oxido-Reductase in Control of Animal and Plant Growth. Plenum Press, New York.Google Scholar
26. Marty, F. 1985. Analytical characterization of vacuolar membranes from higher plants. Pages 1428 in Marin, B. P., ed. Biochemistry and Function of Vacuolar Adenosine Triphosphatase in Fungi and Plants. Springer-Verlag, Berlin.CrossRefGoogle Scholar
27. Miller, A. J. and Smith, S. J. 1992. The mechanism of nitrate transport across the tonoplast of barley root cells. Planta 187:554557.CrossRefGoogle ScholarPubMed
28. Mitchell, P. M. 1985. The correlation of chemical and osmotic forces in biochemistry. J. Biochem. 97:118.Google Scholar
29. Morré, D. J. 1990. Plasma membrane cytochemistry. Pages 7692 in Larsson, C. and Møller, I. M., eds. The Plant Plasma Membrane—Structure, Function and Molecular Biology. Springer-Verlag, Berlin.CrossRefGoogle Scholar
30. Overton, E. 1899. Ueber die allgemeinen osmotischen eigenschaften der zelle, ihre vermutlichen ursachen und ihre bedeutung für die physiologie. Vierteljahrsschr. Naturforsch. Ges. Zurich 44:88114.Google Scholar
31. Palmgren, M. G. 1991. Regulation of plant plasma membrane H+-ATPase activity. Physiol. Plant. 83:314323.CrossRefGoogle Scholar
32. Poole, R. J. 1988. Plasma membrane and tonoplast. Pages 83105 in Baker, D. A. and Hall, J. L., eds. Solute Transport in Plant Cells and Tissues. Loughman Scientific and Technical, U.K. Google Scholar
33. Rea, P. A., Kin, Y., Sarafian, V., Poole, R. J., Davies, J. M., and Sanders, D. 1992. Vacuolar H+-translocating pyrophosphatase: a new category of ion translocase. Trends Biochem. Sci. 17:348353.Google Scholar
34. Roberts, D. M. and Harmon, A. C. 1992. Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:375414.Google Scholar
35. Rochester, C. P., Kjellbom, P., and Larsson, C. 1987. Lipid composition of plasma membranes from barley leaves and roots, spinach leaves and cauliflower inflorescences. Physiol. Plant. 71:257263.CrossRefGoogle Scholar
36. Ruiz-Cristin, J. L. and Briskin, D. P. 1991. Characterization of a H+/NO3–symport associated with plasma membrane vesicles of maize roots using 36ClO3 as a radiotracer analog. Arch. Biochem. Biophys. 285:7482.CrossRefGoogle Scholar
37. Sanders, D. and Slayman, C. L. 1989. Transport at the plasma membrane of plant cells: a review. Pages 311 in Dainty, J., DeMichelis, M. I., Marré, E., and Rasi-Caldogno, F., eds. Plant Membrane Transport: The Current Position. Elsevier Science Publishers B. V., Amsterdam.Google Scholar
38. Singer, S. J. 1992. The structure and function of membranes—a personal memoir. J. Membrane Biol. 129:312.CrossRefGoogle Scholar
39. Stein, W. D. 1986. Transport and Diffusion Across Cell Membranes. Academic Press, Orlando, FL.Google Scholar
40. Stein, W. D. 1990. Channels, Carriers and Pumps. Academic Press, San Diego, CA.Google Scholar
41. Sterling, T. 1993. Mechanism of herbicide absorption across membranes. Weed Sci. (submitted symposium paper).Google Scholar
42. Sze, H., Ward, J. M., and Lai, S. 1992. Vacuolar H+-translocating ATPases from plants: structure, function and isoforms. J. Bioenerg. Biomembranes 24:371381.CrossRefGoogle ScholarPubMed
43. Tanner, W. and Sauer, N. 1989. Metabolism-compartmentation-transport. Pages 295305 in Dainty, J., DeMichelis, M. I., Marré, E., and Rasi-Caldogno, F., eds. Plant Membrane Transport: The Current Position. Elsevier Science Publishers B. V., Amsterdam.Google Scholar
44. Traas, J. A. 1990. The plasma membrane associated cytoskeleton. Pages 269292 in Larsson, C. and Møller, I. M., eds. The Plant Plasma Membrane—Structure, Function and Molecular Biology. Springer-Verlag, Berlin.Google Scholar
45. Tubbe, A. and Buckhout, T. J. 1992. In vitro analysis of the H+-hexose symporter on the plasma membrane of sugarbeets (Beta vulgaris L.). Plant Physiol. 99:945951.CrossRefGoogle ScholarPubMed
46. Wallach, D. F. H. and Zahler, P. H. 1966. Protein conformation in cellular membranes. Proc. Nat. Acad. Sci., U.S.A. 56:15521559.Google Scholar