Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T08:56:39.029Z Has data issue: false hasContentIssue false

Genetic Analysis of Atypical U.S. Red Rice Phenotypes: Indications of Prior Gene Flow in Rice Fields?

Published online by Cambridge University Press:  20 January 2017

David H. Gealy*
Affiliation:
Dale Bumpers National Rice Research Center, U.S. Department of Agriculture, Agricultural Research Service, 2890 Hwy. 130 E., Stuttgart, AR 72160
Hesham Agrama
Affiliation:
Rice Research and Extension Center, University of Arkansas, Division of Agriculture, 2900 Stuttgart, AR 72160
Melissa H. Jia
Affiliation:
Dale Bumpers National Rice Research Center, U.S. Department of Agriculture, Agricultural Research Service, 2890 Hwy. 130 E., Stuttgart, AR 72160
*
Corresponding author's E-mail: david.gealy@ars.usda.gov

Abstract

Weedy red rice is a troublesome weed problem in rice fields of the southern United States. Typically, red rice plants are much taller than rice cultivars, and most biotypes are either awnless with straw-colored hulls (strawhull) or have long awns with black-colored hulls (blackhull). Outcrossing between rice and red rice occurs at low rates, resulting in a broad array of plant types. Simple sequence repeat (SSR) markers were used to evaluate the genetic backgrounds of atypical red rice types obtained from rice farms in Arkansas, Louisiana, Missouri, and Mississippi, in comparison to standard red rice types and rice cultivars. Principal coordinates analysis (PCoA) and population structure analysis of atypical red rice accessions suggested that short-stature awnless (LhtsA−) and awned (LhtsA+) types, each representing a total of about 5% of a 460-accession collection, usually were closely genetically related to their normal-sized counterparts, and not with cultivated rice. A short-awned, intermediate height type, ‘Sawn’, representing about 4% of the accessions was genetically distinct from all of the other types. Key alleles in Sawn types appeared to be shared by both standard awnless (StdRRA−) and awned (StdRRA+) red rice, suggesting that Sawn types could have arisen from gene flow between awned and awnless red rice types.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agrama, H. A., McClung, A. M., and Yan, W. 2011. Using minimum DNA marker loci for accurate population classification in rice (Oryza sativa L.). Molecular Breeding online, DOI: 10.1007/s11032-011-9558-x.CrossRefGoogle Scholar
Agrama, H. A., Yan, W., Jia, M., Fjellstrom, R., and McClung, A. M. 2010. Genetic structure associated with diversity and geographic distribution in the USDA rice world collection. Nat. Sci. 2:247291. Accessed: April 6, 2012.Google Scholar
Agrama, H. A., Yan, W., Lee, F., Fjellstrom, R., Chen, M-H., Jia, M., and McClung, A. 2009. Genetic assessment of a mini-core developed from the USDA rice genebank. Crop Sci. 49:13361346.Google Scholar
Asano, K., Yamasaki, M., Takuno, S., Miura, K., Katagiri, S., Ito, T., Doi, K., Wu, J., Ebana, K., Matsumoto, T., Innan, H., Kitano, H., Ashikari, M., and Matsuoka, M. 2011. Artificial selection for a green revolution gene during japonica rice domestication. Proc. Natl. Acad. Sci. U.S.A. 108:10341039.CrossRefGoogle Scholar
Burgos, N. R., Norsworthy, J. K., Scott, R. C., and Smith, K. L. 2008. Red rice (Oryza sativa) status after 5 years of imidazolinone resistant rice technology in Arkansas. Weed Technol. 22:200208.CrossRefGoogle Scholar
Cao, Q., Lu, B. R., Xia, H., Rong, J., Sala, F., Spada, A., and Grassi, F. 2006. Genetic diversity and origin of weedy rice (Oryza sativa f. spontanea) populations found in north-eastern China revealed by simple sequence repeat (SSR) markers. Ann. Bot. 98:12411252.CrossRefGoogle ScholarPubMed
Delouche, J. C., Burgos, N. R., Gealy, D. R., de San Martin, D. Z., Labrada, R., Larinde, M., and Rosell, C. 2007. Weedy Rices—Origin, Biology, Ecology, and Control. FAO Plant Production and Protection Paper 188. Rome, Italy FAO. 144 p.Google Scholar
Eizenga, G. C., Agrama, H. A., Lee, F. N., and Jia, Y. 2009. Exploring genetic diversity and potential novel disease resistance genes in a collection of rice (Oryza spp.) wild relatives. Genet. Resour. Crop Evol. 56:6576.CrossRefGoogle Scholar
Estorninos, L. E. Jr., Gealy, D. R., Gbur, E. E., Talbert, R. E., and McClelland, M. R. 2005. Rice and red rice interference: II. Rice response to population densities of three red rice (Oryza sativa) ecotypes. Weed Sci. 53:683689.Google Scholar
Estorninos, L. E. Jr., Gealy, D. R., and Wilson, C. E. Jr. 2006. Genetic analysis and reciprocal outcrossing rates of red rice types in Arkansas. Pages 190198 in Norman, R. J., Meullenet, J.-F., and Moldenhauer, K.A.K., eds. B. R. Wells Rice Research Studies 2005. University of Arkansas Agricultural Experiment Station Research Series 540. Fayetteville, AR.Google Scholar
Evanno, G., Regnaut, S., and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:26112620.Google Scholar
Excoffier, L. and Lischer, H. E. L. 2010. Arlequin suite. Version 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10:564567.CrossRefGoogle ScholarPubMed
Falush, D., Stephens, M., and Pritchard, J. K. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 164:15671587.CrossRefGoogle ScholarPubMed
Fjellstrom, R. G., McClung, A. M., Gibbons, J., and Deren, C. 2004. Development of genetic markers for semi-dwarf plant height and photoperiod insensitivity for marker aided selection in U.S. rice. in Rice Technical Working Group Meeting Proceeding, February 29–March 4, 2004, New Orleans, LA. 2004. CDROM.Google Scholar
Garris, A. J., Tai, T. H., Colburn, J., Kresovich, S., and McCouch, S. R. 2005. Genetic structure and diversity in Oryza sativa L. Genetics. 169:16311638.Google Scholar
Gealy, D. R. 2005. Gene movement between rice (Oryza sativa) and weedy rice (Oryza sativa): a U.S. temperate rice perspective. Pages 323354 in Gressel, J. ed. Crop Ferality and Volunteerism. Boca Raton, FL: CRC Press, p. 422.Google Scholar
Gealy, D. R., Agrama, H. A., and Eizenga, G. C. 2009. Exploring genetic and spatial structure of U.S. weedy red rice (Oryza sativa) in relation to rice relatives worldwide. Weed Sci. 57:627643.CrossRefGoogle Scholar
Gealy, D. R., Agrama, H., Wilson, C. E. Jr., and Estorninos, L. E. Jr. 2007. Population-structure analysis of red rice in Arkansas: DNA marker evidence for gene flow between rice and red rice. R.B. Wells Rice Research Studies 2006. Series 550., Pp. 7483.Google Scholar
Gealy, D. R., Estorninos, L. E. Jr., and Wilson, C. E. 2005. Identifying red rice crosses in Arkansas rice fields. Pages 201209 in Norman, R. J., Meullenet, J.-F., and Moldenhauer, K.K.K., editors. B. R. Wells Rice Research Studies 2004. University of Arkansas Agricultural Experiment Station Research Series 529. Fayetteville, AR.Google Scholar
Gealy, D. R., Mitten, D. H., and Rutger, J. N. 2003. Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa): implications for weed management. Weed Technol. 17:627645.CrossRefGoogle Scholar
Gealy, D. R., Tai, T. H., and Sneller, C. H. 2002. Identification of red rice, rice, and hybrid populations using microsatellite markers. Weed Sci. 50:333339.CrossRefGoogle Scholar
Gealy, D. R., Yan, W., and Rutger, J. N. 2006. Red rice (Oryza sativa) plant types affect growth, coloration, and flowering characteristics of first and second generation crosses with rice. Weed Technol. 20:839852.Google Scholar
Gramene. 2008. SSR Markers Resource. www.gramene.org/markers/microsat/. Accessed: September 15, 2011.Google Scholar
[GRIN] Germplasm Resources Information Network. 2011. Germplasm Resources Information Network. http://www.ars-grin.gov/npgs/. Accessed: September 15, 2011.Google Scholar
Jia, Y., Redus, M., Wang, Z., and Rutger, J. N. 2004. Development of a SNLP marker from the Pi-ta blast resistance gene by tri-primer PCR. Euphytica. 138:97105.CrossRefGoogle Scholar
Lee, S., Jia, Y., Jia, M., Gealy, D. R., Olsen, K. M., and Caicedo, A. L. 2011. Molecular evolution of the rice blast resistance gene Pi-ta in invasive weedy rice in the USA. PLos one. 6(10):e26260 DOI:10.1371/journal.pone.0026260.Google Scholar
Li, C., Zhou, A., and Sang, T. 2006. Rice domestication by reducing shattering. Science. 311:19361939.Google Scholar
Liu, K. and Muse, S. 2005. PowerMarker: and integrated analysis environment for genetic marker analysis. Bioinformatics. 21:21282129.Google Scholar
Londo, J. P. and Schaal, B. A. 2007. Origins and population genetics of weedy red rice in the USA. Mol. Ecol. 16:45234535.Google Scholar
Lu, H., Redus, M. A., Coburn, J. R., Rutger, J. N., McCouch, S. R., and Tai, T. H. 2005. Population structure and breeding patterns of 145 US rice cultivars based on SSR marker analysis. Crop Sci. 45:6676.Google Scholar
Nei, M. and Takezaki, N. 1994. Estimation of genetic distances and phylogenetic trees from DNA analysis. Proceedings of the 5th World Congress. Genet. Appl. Livestock Prod. 21:405412.Google Scholar
Pritchard, J. K., Stephens, M., and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics. 155:945959.Google Scholar
Reagon, M., Thurber, C. S., Gross, B. L., Olsen, K. M., Jia, Y., and Caicedo, A. L. 2010. Genomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice. BMC Evol. Biol. 10:180 http://www.biomedcentral.com/1471-2148/10/180. Accessed July 27, 2011.Google Scholar
Reagon, M., Thurber, C. S., Olsen, K. M., Jia, Y., and Caicedo, A. L. 2011. The long and the short of it: SD1 polymorphism and the evolution of growth trait divergence in U.S. weedy rice. Mol. Ecol. 20:37433756.CrossRefGoogle Scholar
Shivrain, V. K., Burgos, N. R., Agrama, H. A., Lawton-Raugh, A., Lu, B., Sales, M. A., Boyette, V., Gealy, D. R., and Moldenhauer, K. A. K. 2010a. Genetic diversity of weedy red rice (Oryza sativa) in Arkansas, USA. Weed Res. 50:289302.Google Scholar
Shivrain, V. K., Burgos, N. R., Anders, M. M., Rajgurua, S. N., Moore, J., and Sales, M. A. 2007. Gene flow between Clearfield™ rice and red rice. Crop Prot. 26:349356.Google Scholar
Shivrain, V. K., Burgos, N. R., Gealy, D. R., Moldenhauer, K. A. K., and Baquireza, C. J. 2008. Maximum outcrossing rate and genetic compatibility between red rice (Oryza sativa) biotypes and Clearfield™ rice. Weed Sci. 56:807813.Google Scholar
Shivrain, V. K., Burgos, N. R., Gealy, D. R., Sales, M. A., and Smith, K. L. 2009a. Gene flow from weedy red rice (Oryza sativa L.) to cultivated rice and fitness of hybrids. Pest Manag. Sci. 65:11241129.CrossRefGoogle ScholarPubMed
Shivrain, V. K., Burgos, N. R., Sales, M. A., Mauromoustakos, A., Gealy, D. R., Smith, K. L., Black, H. L., and Jia, M. 2009b. Factors affecting the outcrossing rate between Clearfield™ rice and red rice (Oryza sativa). Weed Sci. 57:394403.Google Scholar
Shivrain, V. K., Burgos, N. R., Scott, R. C., Gbur, E. E. Jr., Estorninos, L. E. Jr., and McClelland, M. R. 2010b. Diversity of weedy redrice (Oryza sativa L.) in Arkansas, U.S.A. in relation to weed management. Crop Prot. 29:721730.Google Scholar
Thomson, M. J., Septiningsih, E. M., Suwardjo, F., Santoso, T. J., Silitonga, T. S., and McCouch, S. R. 2007. Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theor. Appl. Genet. 114:559568.Google Scholar
Thurber, C. S., Reagon, M., Gross, B. L., Olsen, K. M., Jia, Y., and Caicedo, A. L. 2010. Molecular evolution of shattering loci in U.S. weedy rice. Mol. Ecol. 19:32713284.CrossRefGoogle ScholarPubMed
Vaughan, L. K., Ottis, B. V., Prazak-Havey, A. M., Bormans, C. A., Sneller, C., Chandler, J. M., and Park, W. D. 2001. Is all red rice found in commercial rice really Oryza sativa? Weed Sci. 49:468476.Google Scholar
Yan, W. G., Rutger, J. N., Bryant, R. J., Bockelman, H. E., Fiellstrom, R G., Chen, M. H., Tai, T. H., and McClung, A. M. 2007. Development and evaluation of a core subset of the USDA rice (Oryza sativa L.) germplasm collection. Crop Sci. 47:869878.Google Scholar
Zhang, W., Linscombe, S., Webster, E., Tan, S., and Oard, J. 2006. Risk assessment of the transfer of imazethapyr herbicide tolerance from Clearfield rice to red rice (Oryza sativa). Euphytica. 152:7586.Google Scholar
Zhang, W., Linscombe, S., and Oard, J. 2008. Genetic and agronomic analyses of red rice-ClearField hybrids and their progeny produced from natural and controlled crosses. Euphytica. 164:659668.Google Scholar
Supplementary material: File

Gealy et al. supplementary material

Table S1

Download Gealy et al. supplementary material(File)
File 150 KB
Supplementary material: File

Gealy et al. supplementary material

Figure S1

Download Gealy et al. supplementary material(File)
File 1.2 MB
Supplementary material: Image

Gealy et al. supplementary material

Figure S2

Download Gealy et al. supplementary material(Image)
Image 162.3 KB
Supplementary material: File

Gealy et al. supplementary material

Table S2

Download Gealy et al. supplementary material(File)
File 75.8 KB
Supplementary material: File

Gealy et al. supplementary material

Table S3

Download Gealy et al. supplementary material(File)
File 213.5 KB