Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T16:46:36.989Z Has data issue: false hasContentIssue false

Comparison of the Bleaching Activity of Norflurazon and Oxyfluorfen

Published online by Cambridge University Press:  12 June 2017

Gerhard Sandmann
Affiliation:
Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-7750 Konstanz, West-Germany
Peter Böger
Affiliation:
Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, D-7750 Konstanz, West-Germany

Abstract

The bleaching effects of norflurazon [4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)-3 (2H)-pyridazinone] and of oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene] were compared using the intact microalga Scenedesmus acutus and the fungus Phycomyces blakesleeanus. Under the influence of oxyfluorfen, but not of norflurazon, pigments and membranes were degraded. This activity is typical for oxyfluorfen. Norflurazon prevented carotene synthesis, but did not cause degradation of carotenoids, chlorophylls, or 35S-sulfolipid, a marker of photosynthetic membranes. Furthermore, light-induced ethane evolution by Scenedesmus is substantial with oxyfluorfen, but not with norflurazon present. Oxyfluorfen apparently causes radical-initiated peroxidation of polyunsaturated fatty acids.

Type
Research Article
Copyright
Copyright © 1983 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Axelsson, L., Klockare, B., Ryberg, H., and Sandelius, A. S. 1981. The function of carotenoids during chloroplast development. II. Photostability and organization of early forms of chlorophyll (ide). Pages 285293 in Akoyunoglou, G., ed. Proc. 5th Int. Congr. Photosynth. Balaban Int. Sci. Serv., Philadelphia.Google Scholar
2. Bartels, P. B. and Watson, C. W. 1978. Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci. 26:198203.Google Scholar
3. Bürstell, H. and Hilgenberg, W. 1975. Tryptophanstoffwechsel bei Phycornyces blakesleeanus Bgff. I. Die Aufklärung des Biosyntheseweges der 3-Indolessigsäure. Biol. Zentralbl. 94:389400.Google Scholar
4. Davies, B. H. 1965. Analysis of carotenoid pigments. Pages 489532 in Goodwin, T. W., ed. Chemistry and Biochemistry of Plant Pigments. Academic Press, New York.Google Scholar
5. Foote, C. S. 1976. Photosensitized oxidation and singlet oxygen: Consequences in biological systems. Pages 85133 in Pryor, W. A., ed. Free Radicals in Biology., Vol. II. Academic Press, New York.Google Scholar
6. Kleudgen, H. K. 1979. Changes in composition of chlorophylls, carotenoids, and prenylquinones in green seedlings of Hordeum and Raphanus induced by the herbicide SAN 6706 – An effect possibly antagonistic to phytochrome action. Pestic. Biochem. Physiol. 12:231238.Google Scholar
7. Kunert, K.-J. and Böger, P. 1981. The bleaching effect of the diphenyl ether oxyfluorfen. Weed Sci. 29:169173.Google Scholar
8. Lichtenthaler, H. K. and Kleudgen, H. K. 1977. Effect of the herbicide SAN 6706 on biosynthesis of photosynthetic pigments and prenylquinones in Raphanus and in Hordeum seedlings. Z. Naturforsch. 32c:236240.Google Scholar
9. MacKinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140:315322.Google Scholar
10. Pallett, K. E. and Dodge, A. D. 1979. The role of light and oxygen in the action of the photosynthetic inhibitor herbicide monuron. Z. Naturforsch. 34c:10581061.Google Scholar
11. Ridley, S. M. and Ridley, J. 1979. Interaction of chloroplasts with inhibitors, location of carotenoid synthesis, and during chloroplast development. Plant Physiol. 63:392398.CrossRefGoogle ScholarPubMed
12. Sandmann, G. and Böger, P. 1980. Copper deficiency and toxicity in Scenedesmus . Z. Pflanzenphysiol. 98:5359.CrossRefGoogle Scholar
13. Sandmann, G. and Böger, P. 1982. Mode of action of herbicidal bleaching. Pages 111130 in Moreland, D. E., St. John, J. B., and Hess, F. D., eds. Biochemical Responses Induced by Herbicides. ACS Symposium Series, No. 181, Washington, DC.Google Scholar
14. Sandmann, G. and Böger, P. 1983. Peroxidative formation of C3-hydrocarbons from an ω-4 polyunsaturated fatty acid (16:3ω4) in the alga Bumilleriopsis . Lipids (in press).Google Scholar
15. Sandmann, G. and Böger, P. 1982. Formation and degradation of photosynthetic membranes determined by 35S-labeled sulfolipid. Plant Sci. Lett. 24:347352.CrossRefGoogle Scholar
16. Sandmann, G. and Böger, P. 1982. The fatty acid source of short-chain hydrocarbons formed by peroxidation. Lipids 17:3541.Google Scholar
17. Sandmann, G., Bramley, P. M., and Böger, P. 1980. The inhibitory mode of action of the pyridazinone herbicide norflurazon on a cell-free carotenogenic enzyme system. Pest. Biochem. Physiol. 14:185191.Google Scholar
18. Sandmann, G., Kunert, K.-J., and Böger, P. 1979. Biological systems to assay herbicidal bleaching. Z. Naturforsch. 34c: 10441046.CrossRefGoogle Scholar
19. Sandmann, G., Kunert, K.-J., and Böger, P. 1981. Bleaching activity and chemical constitution of phenylpyridazinones. Pest. Biochem. Physiol. 15:288293.Google Scholar
20. Urbach, D., Suchanka, M., and Urbach, W. 1976. Effect of substituted pyridazinone herbicides and of difunone (EMD-IT 5914) on carotenoid biosynthesis in green algae. Z. Naturforsch. 31c:652655.Google Scholar
21. Vaisberg, A. J. and Schiff, J. A. 1979. Events surrounding the early development of Euglena chloroplasts. 7. Inhibition of carotenoid biosynthesis by the herbicide SAN 9789 [4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)-3(2H)pyridazinone] and its developmental consequences. Plant Physiol. 57:260269.Google Scholar