Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T12:37:39.705Z Has data issue: false hasContentIssue false

Characterization of an s-Triazine-Resistant Biotype of Brachypodium distachyon

Published online by Cambridge University Press:  12 June 2017

Jonathan Gressel
Affiliation:
Deps. Plant Genetics and Biochemistry, Weizmann, Jnst. Sci., Rehovot 76100, Israel
Yael Regev
Affiliation:
Div. Weed Sci., Neve Yaar Exp. Stn., Agric. Res. Organ., Haifa, 31999, Israel
Shmuel Malkin
Affiliation:
Deps. Plant Genetics and Biochemistry, Weizmann, Jnst. Sci., Rehovot 76100, Israel
Yeshaiahu Kleifeld
Affiliation:
Div. Weed Sci., Neve Yaar Exp. Stn., Agric. Res. Organ., Haifa, 31999, Israel

Abstract

A triazine-resistant (R) biotype of a Graminaceous weed, Brachypodium distachyon (= Trachynia distachya), was found in the lower Galilee area of Israel after repeated treatments of roadsides with simazine [2-chloro-4,6-bis (ethylamino)-s-triazine] and atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine]. It was not affected at levels up to 3.0 kg/ha of soil-incorporated atrazine or simazine. The (R) biotype was unaffected by atrazine, as ascertained by measuring whole-leaf and plastid fluorescences and the Hill reaction. The triazine-sensitive (S) biotype was inhibited in all these reactions. The data suggest that the (R) biotype has a plastid mode of resistance common to many weed species. The (R) biotype metabolized 14C-(ring)-atrazine more rapidly to both water-soluble and to chloroform-soluble compounds than the (S) biotype did, but that could not explain the immediate resistance at the plastid level. Probably there was evolution towards increased tolerance by detoxification as well as plastid level resistance.

Type
Research Article
Copyright
Copyright © 1983 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ahrens, W. H., Arntzen, C. J., and Stoller, E. W. 1981. Chlorophyll fluorescence assay for the determination of triazine resistance. Weed Sci. 29:316322.Google Scholar
2. Ali, A. and Souza-Machado, V. 1981. Rapid detection of triazine resistant weeds using chlorophyll fluorescence. Weed Res. 21:191197.Google Scholar
3. Arntzen, C. J., Pfister, K., and Steinback, K. E. 1982. The mechanism of chloroplast triazine resistance:alterations in the site of herbicide action. Pages 185213 in Le Baron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. Wiley-Intersci. New York.Google Scholar
4. Avron, M. and Shavit, N. 1963. A sensitive and simple method for determination of ferrocyanide. Anal. Biochem. 6:549554.CrossRefGoogle ScholarPubMed
5. Bandeen, J. D., Stephenson, G. R., and Cowett, E. R. 1982. Discovery and distribution of herbicide resistant weeds in North America. Pages 927 in Le Baron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. Wiley-Intersci., New York.Google Scholar
6. Bor, N. L. 1968. Graminae, Vol. 9. Pages 168170 in Flora of Iraq. Iraq Ministry of Agric., Baghdad.Google Scholar
7. Darmency, H. and Gasquez, J. 1981. Inheritance of triazine resistance in Poa annua: Consequences for population dynamics. New Phytol. 89:487493.CrossRefGoogle Scholar
8. Ducruet, J. M. and Gasquez, J. 1978. Observation de la fluorescence sur feuille entiere et mise en chez Chenopodium album L. et Poa annua L. Chemosphere 8:691696.Google Scholar
9. Feinbrun-Dothan, N. (1983). Flora Palaestina, Vol. 4. Israel Acad. Sci. Humanities, Jerusalem. (in press).Google Scholar
10. Gressel, J. 1982. Triazine herbicide interaction with a 32000 Mr thylakoid protein – Alternative possibilities. Plant Sci. Lett. 25:99106.Google Scholar
11. Gressel, J., Ammon, H. U., Fogelfors, H., Gasquez, J., Kay, Q.O.N., and Kees, H. 1982. Discovery and distribution of herbicide resistant weeds outside North America. Pages 3255 in Le Baron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. Wiley-Intersci., New York.Google Scholar
12. Gressel, J. and Segel, L. A. 1978. The paucity of plants evolving genetic resistance to herbicides; possible reasons and implications. J. Theor. Biol. 75:349371.Google Scholar
13. Gressel, J. and Segel, L. A. 1982. Interrelating factors controlling the rate of appearance of resistance. The outlook for the future. Pages 325347 in Le Baron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. Wiley-Intersci., New York.Google Scholar
14. Gressel, J., Shimabukuro, R. H., and Duysen, M. E. 1983. N-dealkylation of atrazine and simazine in Senecio vulgaris biotypes, a major degradation pathway. Pestic. Biochem. Physiol. (in press).CrossRefGoogle Scholar
15. Hensley, J. R. 1981. A method for identification of triazine resistant and susceptible biotypes of several weeds. Weed Sci. 29:7073.Google Scholar
16. Hill, R. J. 1982. Taxonomy and biological considerations of herbicide resistant and herbicide tolerant biotypes. Pages 8197 in Le Baron, H. M. and Gressel, J., eds. Herbicide resistance in plants. Wiley-Intersci., New York.Google Scholar
17. Holliday, R. J. and Putwain, P. D. 1980. Evolution of herbicide resistance in Senecio vulgaris: variation in susceptibility to simazine between and within populations. J. Appl. Ecol. 17:779791.CrossRefGoogle Scholar
18. Holm, L., Pancho, J. V., Herberger, J. P., and Plucknett, D. L. 1979. A Geographical Atlas of World Weeds. Wiley & Sons, New York. 391.Google Scholar
19. Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds, Distribution and Biology. The Univ. Press of Hawaii, Honolulu. 609.Google Scholar
20. Jensen, K.I.N. 1982. The roles of uptake translocation and metabolism in the differential intraspecific responses to herbicides. Pages 133162 in Le Baron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. Wiley-Intersci., New York.Google Scholar
21. Malkin, S., Armond, P. A., Mooney, H. A., and Fork, D. 1981. Photosystem II photosynthetic unit sizes from fluorescence induction in leaves. Plant Physiol. 67:570579.Google Scholar
22. Mattoo, A. K., Marder, J. B., Gressel, J., and Edelman, M. 1982. Presence of the rapidly labelled 32000 dalton chloroplast membrane protein in triazine resistant biotypes. FEBS Lett. 140:3640.Google Scholar
23. Oettmeier, W., Masson, K., Fedtke, C., Konze, J. and Schmidt, R. R. 1982. Effect of different photosystem II inhibitors on chloroplasts isolated from species either susceptible or resistant towards s-triazine herbicides. Pestic. Biochem. Physiol. 18:357367.Google Scholar
24. Oettmeier, W., Masson, K., Fedtke, C., Konze, J., and Schmidt, R. R. 1982. Evidence for two different herbicide proteins at the reducing side of photosystem II. Proc. 5th Int. Congr. Pest. Chem., Kyoto. (in press).CrossRefGoogle Scholar
25. Oettmeier, W., Masson, K., and Johanningmeier, U. 1982. Evidence for two different herbicide binding proteins at the reducing side of photosystem II. Biochim. Biophys. Acta 679:376383.Google Scholar
26. Pfister, K. and Arntzen, C. J. 1979. The mode of action of photosystem II-specific inhibitors in herbicide resistant weed biotypes. Z. Naturforsch. 34C:9961009.Google Scholar
27. Pfister, K., Steinback, K. E., Gardner, G., and Arntzen, C. J. 1981. Photoaffinity labelling of an herbicide receptor protein in chloroplast membranes. Proc. Nat. Acad. Sci. USA, 78:981985.Google Scholar
28. Shimabukuro, R. H., Frear, D. S., Swanson, H. R., and Walsh, W. C. 1971. Glutathione conjugation: an enzymatic basis for atrazine resistance in corn. Plant Physiol. 47:1014.Google Scholar
29. Shipman, L. L. 1981. Theoretical study of the binding site and mode of action for photosystem II herbicides. J. Theor. Biol. 90:123148.CrossRefGoogle Scholar
30. Souza-Machado, V. 1982. Inheritance and breeding potential of triazine tolerance and resistance in plants. Pages 257271 in Le Baron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. Wiley-Intersci., New York.Google Scholar
31. Trebst, A., Draber, W. and Donner, W. T. 1982. Mode of action and MO calculation of two classes of herbicides interacting with the reducing side of photosystem II (in press). Proc. 5th Int. Con. Pest. Chem., Kyoto.Google Scholar
32. Truelove, B. and Hensley, H. R. 1982. Methods of testing for herbicide resistance. Pages 117131 in Le Baron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. Wiley-Intersci., New York.Google Scholar
33. Tutin, T. G., ed. 1980. Flora Europaea Vol. 5, Cambridge Univ. Press, Cambridge. pp. 189190.Google Scholar
34. Van Assche, C. J. and Carles, P. M. 1982. Photosystem II inhibiting chemicals. Molecular interaction between inhibitors and a common target. Pages 121 in Moreland, D. E., St. John, J. B., and Hess, F. D., eds. Biochemical Responses Induced by Herbicides. Am. Chem. Soc. Symp. Ser. 181, Am. Chem. Soc., Washington, DC.Google Scholar