Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T18:36:57.487Z Has data issue: false hasContentIssue false

A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides

Published online by Cambridge University Press:  12 June 2017

Matthew J. Foes
Affiliation:
Department of Crop Sciences, University of Illinois, 1102 South Goodwin Avenue, Urbana, IL 61801
Lixin Liu
Affiliation:
Department of Crop Sciences, University of Illinois, 1102 South Goodwin Avenue, Urbana, IL 61801
Patrick J. Tranel
Affiliation:
Department of Crop Sciences, University of Illinois, 1102 South Goodwin Avenue, Urbana, IL 61801
Loyd M. Wax
Affiliation:
USDA/ARS, Crop Protection Research Unit, 1102 South Goodwin Avenue, Urbana, IL 61801

Abstract

A common waterhemp biotype that was not controlled by triazine or acetolactate synthase (ALS)-inhibiting herbicides was isolated from a field in Bond County, IL, in the fall of 1996. Greenhouse and laboratory experiments determined resistance to atrazine and three ALS-inhibiting herbicides in this biotype. Based on whole-plant response, the Bond County common waterhemp biotype required over 1,000 times more imazethapyr relative to a susceptible biotype to reduce growth 50%. Cross-resistance to thifensulfuron, a sulfonylurea, and flumetsulam, a triazolopyrimidine sulfonanilide, was also detected. Based on in vivo enzyme assays, ALS in the Bond County common waterhemp biotype was 20-, > 8-, and 68-fold less sensitive than ALS in the susceptible biotype to imazethapyr, thifensulfuron, and flumetsulam, respectively. Whole-plant efficacy trials also indicated that the Bond County common waterhemp biotype required more than 20 kg ha−1 of atrazine to inhibit growth 50%. Chlorophyll fluorescence assays revealed that 100 nM atrazine inhibited photosynthesis in the susceptible biotype, whereas 10 M did not affect photosynthesis in the resistant biotype. Regions of the genes encoding ALS and D1 proteins were sequenced to determine the molecular basis for the resistances. Triazine resistance was conferred by a glycine for serine substitution at residue 264 of the D1 protein, while ALS resistance was conferred by a leucine for tryptophan substitution at residue 569 of ALS.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, W. H. and Stoller, E. W. 1983. Competition, growth rate, and CO2 fixation in triazine-susceptible and -resistant smooth pigweed (Amaranthus hybridus). Weed Sci. 31: 438444.CrossRefGoogle Scholar
Anderson, D. D., Roeth, F. W., and Martin, A. R. 1996. Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays) . Weed Technol. 10: 570575.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270: 1738117385.CrossRefGoogle ScholarPubMed
Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., and Ouellette, B.F.F. 1998. Genbank. Nucleic Acids Res. 26: 17.CrossRefGoogle ScholarPubMed
Bettiny, P., McNally, S., Sevignac, M., Darmency, M., Gasquez, J., and Dron, M. 1987. Atrazine resistance in Chenopodium album . Plant Physiol. 84: 14421446.CrossRefGoogle Scholar
Blyden, E. R. and Gray, J. C. 1986. The molecular basis of triazine herbicide resistance in Senecio vulgaris L. Biochem. Soc. Trans. 14: 62.Google Scholar
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 1315.Google Scholar
Foes, M. J., Wax, L. M., Stoller, E. W., and Vigue, G. T. 1996. Response of kochia (Kochia scoparia) biotypes to selected herbicides. Proc. N. Cent. Weed Sci. Soc. 51: 127.Google Scholar
Gressel, J. 1991. Why get resistance? It can be prevented or delayed. Pages 1-26 in Casely, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Boston: Butterworth-Heinemann.Google Scholar
Gronwald, J. W. 1994. Resistance to photosystem II inhibiting herbicides. Pages 27-60 in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: CRC Press.Google Scholar
Gutteri, M. J., Eberlein, C. V., Mallory-Smith, C. A., and Thill, D. C. 1996. Molecular genetics of target-site resistance to acetolactate synthase inhibiting herbicides. Pages 10-16 in Brown, T. M., ed. Molecular Genetics and Evolution of Pesticide Resistance. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Hattori, J., Brown, D., Mourad, G., Labbe, H., Ouellet, T., Sunohara, G., Rutledge, R., King, J., and Miki, B. 1995. An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol. Gen. Genet. 246: 419425.Google Scholar
Heap, I. M. 1997. International Survey of Herbicide-Resistant Weeds. Corvallis, OR: WeedSmart, pp. 133.Google Scholar
Hirschberg, J. and McIntosh, L. 1983. Molecular basis of herbicide resistance in Amaranthus hybridus . Science 222: 13461349.CrossRefGoogle ScholarPubMed
Horak, M. J. and Peterson, D. E. 1995. Biotypes of palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9: 192195.Google Scholar
Jasieniuk, M., Brule-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44: 176193.Google Scholar
Lovell, S. T., Wax, L. M., Horak, M. J., and Peterson, D. E. 1996. Imidazolinone and sulfonylurea resistance in a biotype of common waterhemp (Amaranthus rudis) . Weed Sci. 44: 789794.Google Scholar
Maxwell, B. D. and Mortimer, A. M. 1994. Selection for herbicide resistance. Pages 1-26 in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: CRC Press.Google Scholar
Ort, D. R., Ahrens, W. H., Martin, B., and Stoller, E. W. 1983. Comparison of photosynthetic performance in triazine-resistant and susceptible biotypes of Amaranthus hybridus . Plant Physiol. 72: 925930.CrossRefGoogle ScholarPubMed
Ryan, G. F. 1970. Resistance of common groundsel to simazine and atrazine. Weed Sci. 18: 614616.Google Scholar
Schmenk, R. E., Barrett, M., and Witt, W. E. 1997. An investigation of smooth pigweed (Amaranthus hybridus L.) resistance to acetolactate synthase inhibiting herbicides. Weed Sci. Soc. Am. Abstr. 37: 296.Google Scholar
Sprague, C. L., Stoller, E. W., and Wax, L. M. 1997a. Common cocklebur (Xanthium strumarium) resistance to selected ALS-inhibiting herbicides. Weed Technol. 11: 241247.CrossRefGoogle Scholar
Sprague, C. L., Stoller, E. W., and Wax, L. M. 1997b. Response of an acetolactase synthase (ALS)-resistant biotype of Amaranthus rudis to selected ALS-inhibiting herbicides. Weed Res. 37: 93101.Google Scholar
Sprague, C. L., Stoller, E. W., Wax, L. M., and Horak, M. J. 1997c. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Sci. 45: 192197.Google Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp. is conferred by a Trp to Leu mutation in ALS gene. Plant Physiol. 111: 1353.Google Scholar
Wright, T. 1997. Development and Characterization of Imidazolinone-Resistant Sugarbeet Somatic Cell Selections. . Michigan State University, East Lansing, MI. 227 p.Google Scholar
Wright, T. R., Bascomb, N. F., Sturner, S. F., and Penner, D. 1998. Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci. 46: 1323.CrossRefGoogle Scholar