Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T09:59:40.183Z Has data issue: false hasContentIssue false

Antagonism of Haloxyfop Activity in Tall Fescue (Festuca arundinacea) by Dicamba and Bentazon

Published online by Cambridge University Press:  12 June 2017

Renan Aguero-Alvarado
Affiliation:
Dep. Crop Sci., Oreg. State Univ., Corvallis, OR 97331
Arnold P. Appleby
Affiliation:
Dep. Crop Sci., Oreg. State Univ., Corvallis, OR 97331
Donald J. Armstrong
Affiliation:
Dep. Bot. and Plant Pathol., Oreg. State Univ., Corvallis, OR 97331

Abstract

Studies were conducted to test if dicamba reduces haloxyfop herbicidal activity and to determine if this interaction by auxin-type herbicides or bentazon was caused by preventing the haloxyfop-induced inhibition of acetyl-CoA carboxylase (ACCase). Addition of dicamba at concentrations of 2.17 or 4.34 mM reduced haloxyfop activity on tall fescue shoots. Haloxyfop at 14 to 20 μM inhibited the activity of ACCase in cell-free extracts from tall fescue by nearly 50%. Dicamba did not prevent the inhibitory effect of haloxyfop on ACCase activity in these cell-free enzyme preparations. Dicamba alone at concentrations as high as 3.2 mM had no significant effect on the in vitro activity of the enzyme. Bentazon concentrations up to 10 mM did not prevent haloxyfop inhibition of ACCase activity. Bentazon alone or mixed with haloxyfop significantly inhibited ACCase activity at bentazon concentrations starting at 1 mM with near 40% inhibition at 10 mM. of the numerous possible explanations for the interference of dicamba or bentazon with haloxyfop action, interaction directly at the enzyme level appears to have been eliminated.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248.CrossRefGoogle ScholarPubMed
2. Burton, J. D., Gronwald, J. W., Somers, D. A., Connelly, J. A., Gegenback, B. G., and Wise, D. L. 1987. Inhibition of plant acetyl-CoA carboxylase by the herbicides sethoxydim and haloxyfop. Biochem. Biophys. Res. Comm. 148:10391044.CrossRefGoogle ScholarPubMed
3. Campbell, J. R. and Penner, D. 1982. Compatibility of diclofop and BAS 9052 with bentazon. Weed Sci. 30:458462.CrossRefGoogle Scholar
4. Fletcher, R. A. and Drexler, D. M. 1980. Interactions of diclofop-methyl and 2,4-D in cultivated oats (Avena sativa). Weed Sci. 28:363366.CrossRefGoogle Scholar
5. Focke, M. and Lichtenthaler, H. K. 1987. Inhibition of the acetyl-CoA carboxylase of barley chloroplasts by cycloxydim and sethoxydim. Z. Naturforsch. 42c:13611363.CrossRefGoogle Scholar
6. Focke, M., Kobek, K., and Lichtenthaler, H. K. 1988. Fatty-acid biosynthesis and acetyl-CoA carboxylase as a target of diclofop, fenoxaprop and other aryloxy-phenoxy-propionic acid herbicides. Z. Naturforsch. 43c:4754.Google Scholar
7. Gerwick, B. C. 1988. Potential mechanisms for bentazon antagonism with haloxyfop. Weed Sci. 36:286290.CrossRefGoogle Scholar
8. Gillespie, G. R. and Nalewaja, J. D. 1989. Influence of 2,4-D and MCPA formulations and oil on diclofop phytotoxicity. Weed Sci. 37:380384.CrossRefGoogle Scholar
9. Gronwald, J. W., Eberlein, C. V., Betts, K. J., Rosow, K. M., Ehlke, N. J., and Wyse, D. L. 1989. Diclofop resistance in a biotype of Italian ryegrass. Plant Physiol. 89(Suppl.):115.Google Scholar
10. Hartzler, R. G. and Foy, C. L. 1983. Compatibility of BAS 9052 OH with acifluorfen and bentazon. Weed Sci. 31:597599.CrossRefGoogle Scholar
11. Hoagland, D. R. and Arnon, D. I. 1938. The water-culture method of growing plants without soil. California Agric. Exp. Stn. Circ. 347. 39 pp.Google Scholar
12. Irzyk, G. P. and Carpita, N. C. 1989. Relationship between haloxyfop sensitivity and acetyl-CoA carboxylase activity in cultures of proso millet. Plant Physiol. 89(Suppl.):3.Google Scholar
13. Kafiz, B., Caussanel, J. P., Scalla, R., and Gaillardon, P. 1989. Interaction between diclofop-methyl and 2,4-D in wild oat (Avena fatua L.) and cultivated oat (Avena sativa L.), and fate of diclofop-methyl in cultivated oat. Weed Res. 29:299305.CrossRefGoogle Scholar
14. Kobek, K., Focke, M., Lichtenthaler, H. K., Günther, R., and Würzer, B. 1988. Inhibition of fatty acid biosynthesis in isolated chloroplasts by cycloxydim and other cyclohexane-1,3-diones. Physiol. Plant. 72:492498.CrossRefGoogle Scholar
15. Mueller, T. C., William, W. W., and Barrett, M. 1989. Antagonism of johnsongrass (Sorghum halepense) control with fenoxaprop, haloxyfop, and sethoxydim by 2,4-D. Weed Technol. 3:8689.CrossRefGoogle Scholar
16. Ohlrogge, J. B., Kuhn, D. N., and Stumpf, P. K. 1979. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea . Proc. Nat. Acad. Sci. U.S.A. 76:11941198.CrossRefGoogle ScholarPubMed
17. Olson, W. and Nalewaja, J. D. 1982. Effect of MCPA on 14C-diclofop uptake and translocation. Weed Sci. 30:5963.CrossRefGoogle Scholar
18. Rendina, A. R. and Felts, J. M. 1988. Cyclohexanedione herbicides are selective and potent inhibitors of acetyl-CoA carboxylase from grasses. Plant Physiol. 86:983986.CrossRefGoogle ScholarPubMed
19. Rendina, A. R., Felts, J. M., Beaudoin, J. D., Craig-Kennard, A. C., Look, L. L., Paraskos, S. L., and Hagenah, J. A. 1988. Kinetic characterization, stereoselectivity, and species selectivity of the inhibition of plant acetyl-CoA carboxylase by the aryloxyphenoxypropionic acid grass herbicides. Arch. Biochem. Biophys. 265:17.CrossRefGoogle ScholarPubMed
20. Rhodes, G. N. and Coble, H. D. 1984. Influence of application variables on antagonism between sethoxydim and bentazon Weed Sci. 32:436441.CrossRefGoogle Scholar
21. Rhodes, G. N. and Coble, H. D. 1984. Influence of bentazon on absorption and translocation of sethoxydim in goosegrass [Eleusine indica). Weed Sci. 32:595597.CrossRefGoogle Scholar
22. Secor, J. and Cséke, C. 1988. Inhibition of acetyl-CoA carboxylase activity by haloxyfop and tralkoxydim. Plant Physiol. 86:1012.CrossRefGoogle ScholarPubMed
23. Shimabukuro, R. H. and Hoffer, B. L. 1989. Metabolism of diclofop-methyl in annual ryegrass, Lolium rigidum, and its relationship to recovery of membrane potential. Weed Sci. Soc. Am. Abstr. No. 186. Page 82.Google Scholar
24. Simcox, P. D., Reid, E. E., Canvin, D. T., and Dennis, D. T. 1977. Enzymes of the glycolytic and pentose phosphate pathways in proplastids from the developing endosperm of Ricinus communis L. Plant Physiol. 59:11281132.CrossRefGoogle ScholarPubMed
25. Stoltenberg, D. E., Gronwald, J. W., Burton, J. D., and Wyse, D. L. 1988. Effect of sethoxydim and haloxyfop on acetyl-coenzyme A carboxylase in tolerant and susceptible fescue species. Weed Sci. Soc. Am. Abstr. No. 1979. Page 64.Google Scholar
26. Todd, B. G. and Stobbe, E. H. 1980. The basis of the antagonistic effect of 2,4-D on diclofop-methyl toxicity to wild oat (Avena fatua). Weed Sci. 28:371377.CrossRefGoogle Scholar
27. Vick, B. and Beevers, H. 1978. Fatty acid synthesis in endosperm of young castor bean seedlings. Plant Physiol. 62:173178.CrossRefGoogle ScholarPubMed
28. Walker, K., Ridley, S. M., Lewis, T., and Harwood, J. L. 1988. Fluazifop, a grass-selective herbicide which inhibits acetyl-CoA carboxylase in sensitive plant species. Biochem. J. 254:307310.CrossRefGoogle ScholarPubMed
29. Wanamarta, G., Penner, D., and Kells, J. J. 1989. The basis of bentazon antagonism on sethoxydim absorption and activity. Weed Sci. 37:400404.CrossRefGoogle Scholar
30. Zilkey, B. F. and Canvin, D. T. 1971. Localization of oleic acid biosynthesis enzymes in the proplastids of developing castor endosperm. Can. J. Bot. 50:323326.CrossRefGoogle Scholar