Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-01T02:19:11.041Z Has data issue: false hasContentIssue false

Nitrogen-Enhanced Efficacy of Mesotrione and Topramezone for Smooth Crabgrass (Digitaria ischaemum) Control

Published online by Cambridge University Press:  20 January 2017

Matthew T. Elmore*
Affiliation:
Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences Building, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561
James T. Brosnan
Affiliation:
Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences Building, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561
Dean A. Kopsell
Affiliation:
Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences Building, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561
Gregory K. Breeden
Affiliation:
Department of Plant Sciences, The University of Tennessee, 252 Ellington Plant Sciences Building, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561
*
Corresponding author's E-mail: melmore6@utk.edu

Abstract

The herbicides mesotrione and topramezone inhibit 4-hydroxyphenylpyruvate dioxygenase (HPPD) and have efficacy against smooth crabgrass. Research was conducted to determine the impacts of soil-applied nitrogen (N) fertilizer on the effectiveness of single applications of mesotrione and topramezone for postemergence smooth crabgrass control. Field experiments in 2010 and 2011 evaluated the efficacy of mesotrione (280 g a.i. ha−1) and topramezone (9 g a.i. ha−1) for control of multitiller smooth crabgrass subjected to five N fertility treatments (0, 12, 25, 37, or 49 kg N ha−1). Greenhouse experiments evaluated the response of smooth crabgrass to mesotrione (0, 70, 140, 280, 560, and 1,120 g ha−1) and topramezone (0, 4.5, 9, 18, 36, and 72 g ha−1) with 0 or 49 kg N ha−1. Further research evaluated changes in smooth crabgrass leaf tissue pigment concentrations following treatment with mesotrione (280 g ha−1) and topramezone (18 g ha−1) with 0 or 49 kg N ha−1. In field experiments, N increased smooth crabgrass control with mesotrione and topramezone for 8 wk; however, increasing N rate above 25 kg ha−1 did not improve control on any rating date. In dose-response experiments, N application reduced I50 values for mesotrione and topramezone by 67 and 53%, respectively, 21 d after treatment (DAT). Reductions in aboveground biomass with both herbicides were greater when applied following N treatment as well. In leaf-response experiments, N decreased new leaf chlorophyll and carotenoid concentrations and new leaf production after treatment with topramezone. Future research should investigate whether increased translocation of these herbicides to meristimatic regions contribute to N-enhanced efficacy.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beam, J. B., Barker, W. L., and Askew, S. D. 2006. Selective creeping bentgrass (Agrostis stolonifera) control in cool-season turfgrass. Weed Technol. 20:340344.Google Scholar
Brosnan, J. T., Kopsell, D. A., Elmore, M. T., Breeden, G. K., and Armel, G. R. 2011. Changes in ‘Riviera’ bermudagrass [Cynodon dactylon (L.) Pers.] carotenoid pigments after treatment with three p-hydroxyphenylpyruvate dioxygenase-inhibiting herbicides. HortSci. 46:493498.Google Scholar
Brosnan, J. T., Thoms, A. W., McCullough, P. E., Armel, G. R., Breeden, G. K., Sorochan, J. C., and Mueller, T. C. 2010. Efficacy of flazasulfuron for control of annual bluegrass (Poa annua) and perennial ryegrass (Lolium perenne) as influenced by nitrogen. Weed Sci. 58:449456.Google Scholar
Burpee, L. 1995. Interactions among mowing height, nitrogen fertility, and cultivar affect the severity of Rhizoctonia blight of tall fescue. Plant Dis. 79:721726.CrossRefGoogle Scholar
Cathcart, R. J., Chandler, K. C., and Swanton, C. J. 2004. Fertilizer nitrogen rate and the response of weeds to herbicides. Weed Sci. 52:291296.Google Scholar
Dernoeden, P. H. and Fu, J. 2008. Postemergence smooth crabgrass and white clover control with mesotrione. Proc. Northeast Weed Sci. Soc. 62:54.Google Scholar
Dickson, R. L., Andrews, M., Field, R. J., and Dickson, E. L. 1990. Effect of water stress, nitrogen, and gibberellic acid on fluazifop and glyphosate activity on oats (Avena sativa). Weed Sci. 38:5461.CrossRefGoogle Scholar
Elmore, M. T., Brosnan, J. T., Kopsell, D. A., and Breeden, G. K. 2011. Methods of assessing bermudagrass (Cynodon dactylon L.) responses to HPPD inhibiting herbicides. Crop Sci. 51:28402845.CrossRefGoogle Scholar
Giese, M. S., Keese, R. J., Christians, N. E., and Gaussoin, R. E. 2005. Mesotrione: a potential selective post-emergence herbicide for turfgrass. Int. Turfgrass Res. J. 10:100101.Google Scholar
Goddard, M. J. R., Willis, J. B., and Askew, S. D. 2010. Application placement and relative humidity affects smooth crabgrass and tall fescue response to mesotrione. Weed Sci. 58:6772.Google Scholar
Grossmann, K. and Ehrhardt, T. 2007. On the mechanism and selectivity of the corn herbicide topramezone: a new inhibitor of 4-hydroxyphenylpyruvate dioxygenase. Pest Mgmt. Sci. 63:429439.Google Scholar
Idziak, R. and Woznica, Z. 2008. Efficacy of herbicide Callisto 100 SC applied with adjuvants and a mineral fertilizer. Acta Agrophysica. 11:403410.Google Scholar
Jagschitz, J. A. 1970. Pre and postemergence chemical crabgrass control studies in turfgrass 1968–1969. Proc. North Cent. Weed Sci. Soc. 24:379384.Google Scholar
Johnson, D. H., Lingenfelter, D. D., VanGessel, M. J., Johnson, Q. R., and Scott, B. A. 2008. Annual grass control in sweet corn. Proc. Northeast. Weed Sci. Soc. 62:72.Google Scholar
Jones, M. A. and Christians, N. E. 2007. Mesotrione controls creeping bentgrass (Agrostis stolonifera) in Kentucky bluegrass. Weed Technol. 21:402405.CrossRefGoogle Scholar
Kim, T., Neal, J. C., Ditomaso, J. M., and Rossi, F. S. 2002. A survey of weed scientists' perceptions on the significance of crabgrasses (Digitaria spp.) in the United States. Weed Technol. 16:239242.Google Scholar
Kopsell, D. A., Brosnan, J. T., Armel, G. R., and McElroy, J. S. 2010. Increases in bermudagrass [Cynodon dactylon (L.) Pers.] tissue pigments during post-recovery from mesotrione. HortSci. 45:15591562.Google Scholar
Kopsell, D. A., McElroy, J. S., Sams, C. E., and Kopsell, D. E. 2007. Genetic variation in carotenoid concentrations among diploid and amphidiploid Brassica species. HortSci. 42:461465.CrossRefGoogle Scholar
Lefsrud, M., Kopsell, D., Wenzel, A., and Sheehan, J. 2007. Changes in kale (Brassica oleracea L. var. acephala) carotenoid and chlorophyll pigment concentrations during leaf ontogeny. Scientia Hort. 112:136141.Google Scholar
LiJuan, X., Li, D., WenJuan, F., and Howatt, K. 2011. Urea ammonium nitrate additive and raking improved mesotrione efficacy on creeping bentgrass. HortTechnol. 21:4145.Google Scholar
Mayonado, D. J., Hatzios, K. K., Orcutt, D. M., and Wilson, H. P. 1989. Evaluation of the mechanism of action of the bleaching herbicide SC-0051 by HPLC analysis. Pestic. Biochem. Physiol. 35:139145.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.Google Scholar
Mithila, J., Swanton, C. J., Blackshaw, R. E., Cathcart, R. J., and Hall, J. C. 2008. Physiological basis for reduced glyphosate efficacy on weeds grown under low soil nitrogen. Weed Sci. 56:1217.Google Scholar
Penner, D. 2000. Activator adjuvants. Weed Technol. 14:785791.CrossRefGoogle Scholar
Schönhammer, A., Freitag, J., and Koch, H. 2006. Topramezone e ein neuer herbizidwirkstoff zur hochselektiven hirse- und unkrautbekämpfung in mais (Topramazone: a new highly selective herbicide compound for control of warm season grasses and dicotyledoneous weeds in maize). J. Plant Dis. Protect., (Suppl. 20):10231031.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. Pp. 233–241.Google Scholar
Troll, Z., Zak, J., and Waddington, D. 1962. Pre-emergence control of crabgrass with chemicals. Proc. Northeast. Weed Sci. Soc. 16:484487.Google Scholar
Weinberg, T., Lalazar, A., and Rubin, B. 2003. Effects of bleaching herbicides on field dodder (Cuscuta campestris). Weed Sci. 51:663670.Google Scholar
Wichert, R. A. and Pastushok, G. 2000. Mesotrione: weed control with different adjuvant systems. Proc. N. Cent. Weed Sci. Soc. 55:81.Google Scholar
Willis, J. B. and Askew, S. D. 2008a. Effects of triketone herbicides on seeded perennial ryegrass and Kentucky bluegrass. Proc. Northeast. Weed Sci. Soc. 62:1.Google Scholar
Willis, J. B. and Askew, S. D. 2008b. Turfgrass tolerance to selected triketone herbicides. Proc. Southern Weed Sci. Soc. 60:121.Google Scholar
Wilson, J. R. and Brown, R. H. 1983. Nitrogen response of Panicum species differing in CO2 fixation pathways. I. Growth analysis and carbohydrate accumulation. Crop Sci. 23:11481153.Google Scholar