Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-l84fh Total loading time: 0.213 Render date: 2021-10-26T15:25:34.676Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Is all red rice found in commercial rice really Oryza sativa?

Published online by Cambridge University Press:  20 January 2017

L. Kelly Vaughan
Affiliation:
Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128
Brian V. Ottis
Affiliation:
Department of Soil and Crop Science, 2474 TAMU, Texas Agricultural Experiment Station, Texas A&M University, College Station, TX 77843-2474
Ann M. Prazak-Havey
Affiliation:
Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128
Concetta A. Bormans
Affiliation:
Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128
Clay Sneller
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72703
William D. Park
Affiliation:
Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128

Abstract

All red rice found in commercial rice in the United States has traditionally been classified as Oryza sativa ssp. indica. This assumption was tested by analyzing red rice samples collected from across the southern United States rice belt with 18 simple sequence length polymorphism (SSLP) markers distributed across all 12 chromosomes. The results clearly demonstrate that the traditional classification of red rice is inadequate. Some red rice is closely related to O. sativa ssp. indica cultivated rice. However, other red rice is more closely related to O. sativa ssp. japonica. Most importantly, some red rice samples collected from Arkansas, Louisiana, Mississippi, and Texas form a distinct group that includes a number of Oryza nivara and Oryza rufipogon accessions from the National Small Grains Center. In particular, red rice samples from three states were identified that for all 18 markers are identical to the O. rufipogon accession IRGC 105491. These different classes of red rice are intermingled across the southern U.S. rice belt and within individual production fields. Oryza sativa ssp. indica-like red rice and O. rufipogon-like red rice have been found within a single 9-m2 collection site. While the classification of red rice as O. sativa ssp. indica, O. sativa ssp. japonica, or O. rufipogon using DNA markers is generally in agreement with classification based on simple morphological traits, readily observed morphological traits alone are not sufficient to reliably classify red rice. Because red rice is much more diverse than previously assumed, this diversity must be considered when developing red rice management strategies.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggarwal, R. K., Brar, D. S., Nandi, S., Huang, N., and Khush, G. S. 1999. Phylogenic relationships among Oryza species revealed by AFLP analysis. Theor. Appl. Genet. 98:13201328.CrossRefGoogle Scholar
Beebe, S. E., Ochoa, I., Skroch, P., Nienhuis, J., and Tivang, J. 1995. Genetic diversity among common bean breeding lines developed for Central America. Crop Sci. 35:11781183.CrossRefGoogle Scholar
Cho, Y.-C., Chung, T.-Y., and Suh, H.- S. 1995. Genetic characteristics of Korean weedy rice (Oryza sativa L.) by RFLP analysis. Euphytica 86:103110.CrossRefGoogle Scholar
Craigmiles, J. P. 1978. Introduction. Pages 56 In Eastin, E. F., ed. Red Rice Research and Control. College Station, TX: Texas Agricultural Experiment Station Bull. B-1270.Google Scholar
Diarra, A., Smith, R. J., and Talbert, R. E. 1985. Growth and morphological characteristics of red rice (Oryza sativa) biotypes. Weed Sci. 3:310314.Google Scholar
Ellstrand, N. C., Prentice, H. C., and Hancock, J. F. 1999. Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 30:539563.CrossRefGoogle Scholar
Ge, S., Sang, T., Lu, B., and Hong, D. 1999. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc. Natl. Acad. Sci. USA 96:1440014405.CrossRefGoogle ScholarPubMed
Gizlice, Z., Carter, T. Jr., Gerig, T. M., and Burton, J. W. 1996. Genetic diversity patterns in North American public soybean cultivars based on coefficient of parentage. Crop Sci. 36:753765.CrossRefGoogle Scholar
Johns, M. A., Skroch, P., Nienhuis, J., Hinrichsen, P., Bascur, G., and Munoz-Schick, C. 1997. Gene pool classification of common bean landraces from Chile based on RAPD and morphological data. Crop Sci. 37:605613.CrossRefGoogle Scholar
Joshi, S. P., Gupta, V. S., Aggarwal, R. K., Ranjekar, P. K., and Brar, D. S. 2000. Genetic diversity and phylogenic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza . Theor. Appl. Genet. 100:13111320.CrossRefGoogle Scholar
Khodayari, K., Smith, R. J., and Black, H. J. 1987. Red rice (Oryza sativa) control with herbicide treatments in soybeans (Glycine max). Weed Sci. 35:127129.Google Scholar
Khush, G. S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35:2534.CrossRefGoogle ScholarPubMed
Kwon, S. L., Smith, R. J., and Talbert, R. E. 1991. Interference of red rice (Oryza sativa) densities in rice (O. sativa). Weed Sci. 39:169174.Google Scholar
Kwon, S. L., Smith, R. J., and Talbert, R. E. 1992. Comparative growth and development of red rice (Oryza sativa) and rice (O. sativa). Weed Sci. 40:5762.Google Scholar
Lago, A. 1982. Characterization of Red Rice (Oryza sativa L.) Phenotypes in Mississippi. Ph.D. dissertation. Mississippi State University, Mississippi State, MS. 143 p.Google Scholar
Langevin, S. A., Clay, K., and Grace, J. B. 1990. The incidence and effects of hybridization between cultivated rice and its related weed red rice (Oryza sativa L.). Evolution 44:10001008.CrossRefGoogle Scholar
Li, R., Jiang, T. B., Xu, C. G., Li, X. H., and Wang, X. K. 2000. Relationship between morphological and genetic differentiation in rice (Oryza sativa L.). Euphytica 114:18.CrossRefGoogle Scholar
Mackill, D. 1995. Classifying japonica rice cultivars with RAPD markers. Crop Sci. 35:889894.CrossRefGoogle Scholar
Martin, C., Juliano, A., Newbury, H. J., Lu, B. R., Jackson, M. T., and Ford-Loyd, B. V. 1997. The use of RAPD markers to facilitate the identification of Oryza species within a germplasm collection. Genet. Res. Crop Evol. 44:175183.CrossRefGoogle Scholar
Noldin, J. A., Chandler, J. M., and McCauley, G. N. 1999a. Red rice (Oryza sativa) biology. I. Characterization of red rice ecotypes. Weed Technol. 13:1218.Google Scholar
Noldin, J. A., Chandler, J. M., Kertchersid, M. L., and McCauley, G. N. 1999b. Red rice (Oryza sativa) biology. II. Ecotype sensitivity to herbicides. Weed Technol. 13:1924.Google Scholar
Oka, H. I. 1991. Genetic diversity of wild and cultivated rice. Pages 5581 In Khush, G. S. and Toenniessen, G. H., eds. Rice Biotechnology. Wallingford, UK: Biotechnology in Agriculture No. 6. IRRI/CAB Int.Google Scholar
Olufowote, J. O., Xu, Y., Chen, X., Park, W. D., Beachell, H. M., Dilday, R. H., Goto, M., and McCouch, S. R. 1997. Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome 40:370378.CrossRefGoogle ScholarPubMed
Parker, C. and Dean, M. L. 1976. Control of wild rice in rice. Pestic. Sci. 7:403416.CrossRefGoogle Scholar
Parsons, B. J., Newbury, H. J., Jackson, M. T., and Ford-Loyd, B. V. 1997. Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Mol. Breed. 3:115125.CrossRefGoogle Scholar
Sankula, S., Braverman, M. P., Jodari, F., Linscombe, S. D., and Oard, J. H. 1997. Evaluation of glufosinate on rice (Oryza sativa) transformed with the BAR gene and red rice (Oryza sativa). Weed Technol. 11:7075.Google Scholar
[SAS] Statistical Analysis Systems. 1997. SAS User's Guide Version 5. Version 6.12. Cary, NC: Statistical Analysis Systems Institute.Google Scholar
Shu, H. S., Sato, Y. I., and Morishima, H. 1997. Genetic characterization of weedy rice (Oryza sativa L.) based on morpho-physiology, isozymes, and RAPD markers. Theor. Appl. Genet. 94:316321.Google Scholar
Skroch, P. W., Nienhuis, J., Beebe, S., Tohme, J., and Pedraza, F. 1998. Comparison of Mexican common bean (Phaseolus vulgaris L.) core and reserve germplasm collections. Crop Sci. 38:488496.CrossRefGoogle Scholar
Stachel, M., Lelley, T., Grausgrubber, H., and Vollmann, J. 2000. Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor. Appl. Genet. 100:242248.CrossRefGoogle Scholar
Tanksley, S. D. and McCouch, S. R. 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:10631066.CrossRefGoogle Scholar
Temnykh, S., Park, W. D., Ayres, N., Cartinhour, S., Hauck, N., Lipovich, L., Cho, Y. G., Ishii, T., and McCouch, S. R. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 100:697712.CrossRefGoogle Scholar
Virk, P. S., Zhu, J., Newbury, H. J., Bryan, G. J., Jackson, M. T., and Ford-Lloyd, B. V. 2000. Effectiveness of different classes of molecular markers for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112:275284.CrossRefGoogle Scholar
Williams, C. E. and Ronald, P. C. 1994. PCR template-DNA isolated quickly from monocot and dicot leaves without tissue homogenization. Nucleic Acids Res. 22:19171918.CrossRefGoogle ScholarPubMed
Xiao, J., Li, J., Grandillo, S., Ahn, S. N., Yuan, L., Tanksley, S. D., and McCouch, S. R. 1998. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon . Genetics 150:899909.Google ScholarPubMed
Zhu, J., Gale, M. D., Quarrie, S., Jackson, M. T., and Bryan, G. J. 1998. AFLP markers for the study of rice biodiversity. Theor. Appl. Genet. 96:602611.CrossRefGoogle Scholar
78
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Is all red rice found in commercial rice really Oryza sativa?
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Is all red rice found in commercial rice really Oryza sativa?
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Is all red rice found in commercial rice really Oryza sativa?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *