Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-h2mp8 Total loading time: 0.288 Render date: 2021-07-29T23:18:28.339Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Arg-128-Leu target-site mutation in PPO2 evolves in wild poinsettia (Euphorbia heterophylla) with cross-resistance to PPO-inhibiting herbicides

Published online by Cambridge University Press:  02 June 2020

Rafael R. Mendes
Affiliation:
Graduate Student, Agronomy Department, State University of Maringá, Maringá, PR, Brazil
Hudson K. Takano
Affiliation:
Postdoctoral Fellow, Agricultural Biology, Colorado State University, Fort Collins, CO, USA
Fernando S. Adegas
Affiliation:
Weed Scientist, Embrapa Soybean, Londrina, PR, Brazil
Rubem S. Oliveira Jr
Affiliation:
Professor, Agronomy Department, State University of Maringá, Maringá, PR, Brazil
Todd A. Gaines
Affiliation:
Associate Professor, Agricultural Biology, Colorado State University, Fort Collins, CO, USA
Franck E. Dayan
Affiliation:
Professor, Agricultural Biology, Colorado State University, Fort Collins, CO, USA
Corresponding

Abstract

Wild poinsettia (Euphorbia heterophylla L.) is a troublesome broadleaf weed in grain production areas in South America. Herbicide resistance to multiple sites of action has been documented in this species, including protoporphyrinogen oxidase (PPO) inhibitors. We investigated the physiological and molecular bases for PPO-inhibitor resistance in a E. heterophylla population (RPPO) from Southern Brazil. Whole-plant dose–response experiments revealed a cross-resistance profile to three different chemical groups of PPO inhibitors. Based on dose–response parameters, RPPO was resistant to lactofen (47.7-fold), saflufenacil (8.6-fold), and pyraflufen-ethyl (3.5-fold). Twenty-four hours after lactofen treatment (120 g ha−1) POST, RPPO accumulated 27 times less protoporphyrin than the susceptible population (SPPO). In addition, RPPO generated 5 and 4.5 times less hydrogen peroxide and superoxide than SPPO, respectively. The chloroplast PPO (PPO1) sequences were identical between the two populations, whereas 35 single-nucleotide polymorphisms were found for the mitochondrial PPO (PPO2). Based on protein homology modeling, the Arg-128-Leu (homologous to Arg-98-Leu in common ragweed [Ambrosia artemisiifolia L.] was the only one located near the catalytic site, also in a conserved region of PPO2. The cytochrome P450 monooxygenase inhibitor malathion did not reverse resistance to lactofen in RPPO, and both populations showed similar levels of PPO1 and PPO2 expression, suggesting that metabolic resistance and PPO overexpression are unlikely. This is the first report of an Arg-128-Leu mutation in PPO2 conferring cross-resistance to PPO inhibitors in E. heterophylla.

Type
Research Article
Information
Weed Science , Volume 68 , Issue 5 , September 2020 , pp. 437 - 444
Copyright
© Weed Science Society of America, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Te-Ming Paul Tseng, Mississippi State University

References

Becerril, JM, Duke, SO (1989) Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol 90:11751181CrossRefGoogle ScholarPubMed
Bi, B, Wang, Q, Coleman, JJ, Porri, A, Peppers, JM, Patel, JD, Betz, M, Lerchl, J, McElroy, JS (2020) A novel mutation A212T in chloroplast protoporphyrinogen oxidase (PPO1) confers resistance to PPO inhibitor oxadiazon in Eleusine indica. Pest Manag Sci 76:17861794CrossRefGoogle ScholarPubMed
Brunharo, CACG, Takano, HK, Mallory-Smith, CA, Dayan, FE, Hanson, BD (2019) Role of glutamine synthetase isogenes and herbicide metabolism in the mechanism of resistance to glufosinate in Lolium perenne L. spp. multiflorum biotypes from Oregon. J Agric Food Chem 67:84318440CrossRefGoogle ScholarPubMed
Brusamarello, AP, Oliveira, PH, Trezzi, MM, Xavier, E, Dalosto, ED (2016) Inheritance of resistance to protoporphyrinogen oxidase inhibitor herbicides in wild poinsettia. Planta Daninha 34:575580CrossRefGoogle Scholar
Busi, R, Gaines, TA, Powles, S (2017) Phorate can reverse P450 metabolism-based herbicide resistance in Lolium rigidum. Pest Manag Sci 73:410417CrossRefGoogle ScholarPubMed
Chen, J, Huang, Z, Huang, H, Wei, S, Liu, Y, Jiang, C, Zhang, J, Zhang, C (2017) Selection of relatively exact reference genes for gene expression studies in goosegrass (Eleusine indica) under herbicide stress. Sci Rep 7:46494CrossRefGoogle ScholarPubMed
Dayan, FE, Armstrong, BM, Weete, JD (1998) Inhibitory activity of sulfentrazone and its metabolic derivatives on soybean (Glycine max) protoporphyrinogen oxidase. J Agric Food Chem 46:20242029CrossRefGoogle Scholar
Dayan, FE, Barker, A, Takano, H, Bough, R, Ortiz, M, Duke, SO (2020) Herbicide mechanisms of action and resistance. Pages 3648in Grodzinski, B, ed. Comprehensive Biotechnology. Amsterdam: ElsevierGoogle Scholar
Dayan, FE, Barker, A, Tranel, PJ (2018) Origins and structure of chloroplastic and mitochondrial plant protoporphyrinogen oxidases: implications for the evolution of herbicide resistance. Pest Manag Sci 74:22262234CrossRefGoogle ScholarPubMed
Dayan, FE, Duke, SO, Weete, JD, Hancock, HG (1997a) Selectivity and mode of action of carfentrazone-ethyl, a novel phenyl triazolinone herbicide. Pestic Sci 51:65733.0.CO;2-9>CrossRefGoogle Scholar
Dayan, FE, Owens, DK, Corniani, N, Silva, FML, Watson, SB, Howell, JL, Shaner, DL (2015) Biochemical markers and enzyme assays for herbicide mode of action and resistance studies. Weed Sci 63:2363CrossRefGoogle Scholar
Dayan, FE, Owens, DK, Tranel, PJ, Preston, C, Duke, SO (2014) Evolution of resistance to phytoene desaturase and protoporphyrinogen oxidase inhibitors—state of knowledge. Pest Manag Sci 70:13581366CrossRefGoogle ScholarPubMed
Dayan, FE, Weete, JD, Duke, SO, Hancock, HG (1997b) Soybean (Glycine max) cultivar differences in response to sulfentrazone. Weed Sci 45:634641Google Scholar
Dayan, FE, Weete, JD, Hancock, HG (1996) Physiological basis for differential sensitivity to sulfentrazone by sicklepod (Senna obtusifolia) and coffee senna (Cassia occidentalis). Weed Sci 44:1217CrossRefGoogle Scholar
de Oliveira, RSJ, Constantin, J, Toledo, R, Kajihara, LH, Stasieviski, Â, Pagliari, PH, de Arantes, JGZ, Cavalieri, SD, Alonso, DG, Roso, AC (2006) Aplicações seqüenciais de flumiclorac-pentil para o controle de Euphorbia heterophylla na cultura da soja. Act Scientiar Agron 28:18Google Scholar
Duke, SO (2018) The history and current status of glyphosate. Pest Manag Sci 74:10271034CrossRefGoogle ScholarPubMed
Duke, SO, Dayan, FE (2018) Herbicides. Page 9in Encyclopedia of Life Sciences—eLS. Chichester, UK: WileyGoogle Scholar
Frigo, MJ, Mangolin, CA, Oliveira, RS, Maria de Fátima, P (2009) Esterase polymorphism for analysis of genetic diversity and structure of wild poinsettia (Euphorbia heterophylla) populations. Weed Sci 57:5460CrossRefGoogle Scholar
Gaines, TA, Zhang, W, Wang, D, Bukun, B, Chisholm, ST, Shaner, DL, Nissen, SJ, Patzoldt, WL, Tranel, PJ, Culpepper, AS, Grey, TL, Webster, TM, Vencill, WK, Sammons, RD, Jiang, Jet al. (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci USA 107:10291034CrossRefGoogle ScholarPubMed
Gelmini, GA, Victória Filho, R, Soares, MdCdS, Adoryan, ML (2001) Resistência de biótipos de Euphorbia heterophylla L. aos herbicidas inibidores da enzima ALS utilizados na cultura de soja. Bragantia 60:9399CrossRefGoogle Scholar
Giacomini, DA, Umphres, AM, Nie, H, Mueller, TC, Steckel, LE, Young, BG, Scott, RC, Tranel, PJ (2017) Two new PPX2 mutations associated with resistance to PPO-inhibiting herbicides in Amaranthus palmeri. Pest Manag Sci 73:15591563CrossRefGoogle ScholarPubMed
Ha, SB, Lee, SB, Lee, Y, Yang, K, Lee, N, Jang, SM, Chung, JS, Jung, S, Kim, YS, Wi, SG, Back, K (2003) The plastidic Arabidopsis protoporphyrinogen IX oxidase gene, with or without the transit sequence, confers resistance to the diphenyl ether herbicide in rice. Plant Cell Environ 27:7988CrossRefGoogle Scholar
Heap, IM (2020) International Herbicide-Resistant Weed Database. http://www.weedscience.org. Accessed: March 17, 2020Google Scholar
Heinemann, IU, Diekmann, N, Masoumi, A, Koch, M, Messerschmidt, A, Jahn, M, Jahn, D (2007) Functional definition of the tobacco protoporphyrinogen IX oxidase substrate-binding site. Biochem J 402:575580CrossRefGoogle ScholarPubMed
Jung, S, Lee, Y, Yang, K, Lee, SB, Jang, SM, Ha, SB, Back, K (2004) Dual targeting of Myxococcus xanthus protoporphyrinogen oxidase into chloroplasts and mitochondria and high level oxyfluorfen resistance. Plant Cell Environ 27:14361446CrossRefGoogle Scholar
Keith, BK, Lehnhoff, EA, Burns, EE, Menalled, FD, Dyer, WB (2015) Characterisation of Avena fatua populations with resistance to multiple herbicides. Weed Res 55:621630CrossRefGoogle Scholar
Koch, M, Breithaupt, C, Kiefersauer, R, Freigang, J, Huber, R, Messerschmidt, A (2004) Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J 23:17201728CrossRefGoogle ScholarPubMed
Lee, HJ, Duke, MV, Duke, SO (1993) Cellular localization of protoporphyrinogen-oxidizing activities of etiolated barley (Hordeum vulgare L.) leaves. Plant Physiol 102:881889CrossRefGoogle ScholarPubMed
Lermontova, I, Grimm, B (2000) Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. Plant Physiol 122:7584CrossRefGoogle ScholarPubMed
Machado, AB, Trezzi, MM, Vidal, RA, Patel, F, Cieslik, LF, Debastiani, F (2015) Rendimento de grãos de feijão e nível de dano econômico sob dois períodos de competição com Euphorbia heterophylla. Planta Daninha 33:4148CrossRefGoogle Scholar
Matringe, M, Camadro, J-M, Labbe, P, Scalla, R (1989) Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 260:231235CrossRefGoogle ScholarPubMed
Meschede, DK, Oliveira, RS Jr, Constantin, J, Scapim, CA (2002) Período crítico de interferência de Euphorbia heterophylla na cultura da soja sob baixa densidade de semeadura. Planta Daninha 20:381387CrossRefGoogle Scholar
Obenland, OA, Ma, R, O’Brien, SR, Lygin, AV, Riechers, DE (2019) Carfentrazone-ethyl resistance in an Amaranthus tuberculatus population is not mediated by amino acid alterations in the PPO2 protein. PLoS ONE 14:e0215431CrossRefGoogle Scholar
Patzoldt, WL, Hager, AG, McCormick, JS, Tranel, PJ (2006) A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc Natl Acad Sci USA 103:1232912334CrossRefGoogle ScholarPubMed
Prigol, A, Galon, L, Forte, CT, Kujawiski, R, Concenço, G, Trezzi, MM, Trevisol, R, Radünz, AL, Perin, GF (2014) Avaliação de biótipos de leiteiro com suspeita de resistência a herbicidas inibidores da ALS e Protox. Rev Bras Herbic 13:216224Google Scholar
Rangani, G, Salas-Perez, RA, Aponte, RA, Knapp, M, Craig, IR, Mietzner, T, Langaro, AC, Noguera, MM, Porri, A, Roma-Burgos, N (2019) A novel single-site mutation in the catalytic domain of protoporphyrinogen oxidase IX (PPO) confers resistance to PPO-inhibiting herbicides. Front Plant Sci 10:568CrossRefGoogle ScholarPubMed
Ritz, C, Baty, F, Streibig, JC, Gerhard, D (2015) Dose-response analysis using R. PLoS ONE 10:e0146021CrossRefGoogle ScholarPubMed
Rojano-Delgado, AM, Pauma-Bautista, C, Varquez-Garcia, J, Mora, DA, Rosario, JM, Portugal, J, De Prado, R (2019) Influence of Cyp450 in the resistance to PPO-inhibiting herbicides: case of a Euphorbia heterophylla biotype. Proc Weed Sci Soc Am 59:126. New Orleans LA, USAGoogle Scholar
Rousonelos, SL, Lee, RM, Moreira, MS, VanGessel, MJ, Tranel, PJ (2012) Characterization of a common ragweed (Ambrosia artemisiifolia) population resistant to ALS- and PPO-inhibiting herbicides. Weed Sci 60:335344CrossRefGoogle Scholar
Sarangi, D, Stephens, T, Barker, AL, Patterson, EL, Gaines, TA, Jhala, AJ (2019) Protoporphyrinogen oxidase (PPO) inhibitor–resistant waterhemp (Amaranthus tuberculatus) from Nebraska is multiple herbicide resistant: confirmation, mechanism of resistance, and management. Weed Sci 67:510520CrossRefGoogle Scholar
Strang, RH, Rogers, RL (1974) Behavior and fate of two phenylpyridazinone herbicides in cotton, corn, and soybean. J Agric Food Chem 22:11191125CrossRefGoogle ScholarPubMed
Streibig, JC (1988) Herbicide bioassay. Weed Res 28:479484CrossRefGoogle Scholar
Takano, HK, Beffa, R, Preston, C, Westra, P, Dayan, FE (2019) Reactive oxygen species trigger the fast action of glufosinate. Planta 249:18371849CrossRefGoogle ScholarPubMed
Takano, HK, Fernandes, VNA, Adegas, FS, Oliveira, RS Jr, Westra, P, Gaines, TA, Dayan, FE (2020) A novel TIPT double mutation in EPSPS conferring glyphosate resistance in tetraploid Bidens subalternans. Pest Management Science 76:95102CrossRefGoogle ScholarPubMed
Trezzi, MM, Felippi, CL, Mattei, D, Silva, HL, Nunes, AL, Debastiani, C, Vidal, RA, Marques, A (2005) Multiple resistance of acetolactate synthase and protoporphyrinogen oxidase inhibitors in Euphorbia heterophylla biotypes. J Environ Sci Health Part B 40:101109CrossRefGoogle ScholarPubMed
Trezzi, MM, Nunes, AL, da Silva Portes, E (2009) Interação entre inseticida organofosforado e herbicidas inibidores da PROTOX e sua implicação na resistência de Euphorbia heterophylla. Scientia Agraria 10:423428CrossRefGoogle Scholar
Trezzi, MM, Vidal, RA, Kruse, ND, Nunes, AL (2006) Greenhouse and laboratory bioassays for identification of Euphorbia heterophylla biotypes with multiple resistance to Protox and ALS-inhibiting herbicides. Planta Daninha 24:563571CrossRefGoogle Scholar
Varanasi, VK, Brabham, C, Norsworthy, JK (2018) Confirmation and characterization of non–target site resistance to fomesafen in Palmer amaranth (Amaranthus palmeri). Weed Sci 66:702709CrossRefGoogle Scholar
Varanasi, VK, Brabham, C, Norsworthy, JK, Nie, H, Young, BG, Houston, M, Barber, T, Scott, RC (2017) A statewide survey of PPO-inhibitor resistance and the prevalent target-site mechanisms in Palmer amaranth (Amaranthus palmeri) accessions from Arkansas. Weed Sci 66:149158CrossRefGoogle Scholar
Warabi, E, Usui, K, Tanaka, Y, Matsumoto, H (2001) Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase. Pest Manag Sci 57:743748CrossRefGoogle ScholarPubMed
Watanabe, H, Ohori, Y, Sandmann, G, Wakabayashi, K, Böger, P (1992) Quantitative correlation between short-term accumulation of protoporphyrin IX and peroxidative activity of cyclic imides. Pestic Biochem Physiol 42:99109CrossRefGoogle Scholar
Watanabe, N, Che, F-S, Iwano, M, Takayama, S, Yoshida, S (2001) Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J Biol Chem 276:2047420481CrossRefGoogle ScholarPubMed
Wiersma, A, Gaines, T, Preston, C, Hamilton, J, Giacomini, D, Robin Buell, C, Leach, J, Westra, P (2015) Gene amplification of 5-enol-pyruvylshikimate-3-phosphate synthase in glyphosate-resistant Kochia scoparia. Planta 241:463474CrossRefGoogle ScholarPubMed
Xavier, E, Trezzi, MM, Oliveira, MC, Vidal, RA, Brusamarello, AP (2018) Activity of antioxidant enzymes in Euphorbia heterophylla biotypes and their relation to cross resistance to ALS and Protox inhibitors. Planta Daninha 36:e018176629CrossRefGoogle Scholar
5
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Arg-128-Leu target-site mutation in PPO2 evolves in wild poinsettia (Euphorbia heterophylla) with cross-resistance to PPO-inhibiting herbicides
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Arg-128-Leu target-site mutation in PPO2 evolves in wild poinsettia (Euphorbia heterophylla) with cross-resistance to PPO-inhibiting herbicides
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Arg-128-Leu target-site mutation in PPO2 evolves in wild poinsettia (Euphorbia heterophylla) with cross-resistance to PPO-inhibiting herbicides
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *