Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T19:05:42.459Z Has data issue: false hasContentIssue false

An improved granular formulation for a mycoherbicidal strain of Fusarium oxysporum

Published online by Cambridge University Press:  12 June 2017

B. A. Bailey
Affiliation:
USDA-ARS, Biocontrol of Plant Diseases Laboratory, BARC-W, Building 011A, Beltsville, MD 20705
S. M. Poch
Affiliation:
USDA-ARS, Biocontrol of Plant Diseases Laboratory, BARC-W, Building 011A, Beltsville, MD 20705
J. A. Lewis
Affiliation:
USDA-ARS, Biocontrol of Plant Diseases Laboratory, BARC-W, Building 011A, Beltsville, MD 20705
R. D. Lumsden
Affiliation:
USDA-ARS, Biocontrol of Plant Diseases Laboratory, BARC-W, Building 011A, Beltsville, MD 20705

Abstract

Modifications were investigated to improve shelf-life or long-term survival upon storage of an extruded Oryza sativa L. (rice) flour : gluten : clay: oil formulation (C7) of a mycoherbicide, Fusarium oxysporum Schlechtend: Fr. f. sp. erythroxyli strain EN4, that causes vascular wilt in Erythroxylum coca var. coca (coca). Fermentor-produced biomass, which contained abundant desiccation-resistant chlamydospores, was incorporated into various adaptations of C7 and stored at room temperature (22 to 25 C) under moderately high (50 to 60%) and low (0 to 5%) relative humidities (RHs). The effect of RH on shelf-life was not significant up to 4 mo of storage, while the presence of oil, added to improve its extrusion, reduced viability significantly. Addition of Gossypium hirsutum L. (cotton) embryo flour or complete elimination of oil from the formulation improved shelf-life from 3 mo to > 12 mo. Shelf-life was further improved by removing the binding agent gluten in the formulation and replacing it with autoclaved O. sativa flour. Ability of the formulations to produce secondary propagules, tested on 1% water agar, indicated that, while adding oil had no effect, G. hirsutum embryo flour increased desiccation-resistant chlamydospore counts but lowered macroconidial counts. Autoclaved rice flour (MR) significantly improved both macroconidial and microconidial counts without affecting chlamydospore counts. None of the formulations affected the total viable propagule counts. When compared with the original formulation (C7), the modification (MRRP7), with MR, G. hirsutum embryo flour, and without oil, was found to have improved shelf-life at higher temperature and RHs and enhanced potential for secondary chlamydospore formation. These characteristics are important for survival of the formulated F. oxysporum under less expensive storage conditions and, once applied, for survival in the soil.

Type
Weed Management
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abbasher, A. A., Kroschel, J., and Sauerborn, J. 1995. Microorganisms of Striga hermonthica in northern Ghana with potential as biocontrol agents. Biocontrol Sci. Technol. 5:157161.Google Scholar
Bailey, B. A., Hebbar, K. P., Strem, M., Darlington, L. C., and Lumsden, R. D. 1997a. An alginate prill formulation of Fusarium oxysporum Schlechtend: Fr. f. sp. erythroxyli for biocontrol of Erythroxylum coca var. coca. Biocontrol Sci. Technol. 7:423435.Google Scholar
Bailey, B. A., Hebbar, K. P., Strem, M., Lumsden, R. D., Darlington, L. C., Connick, W. J. Jr., and Daigle, D. J. 1997b. Formulations of Fusarium oxysporum f. sp. erythroxyli for biocontrol of Erythroxylum coca var. coca. Weed Sci. 46:682689.Google Scholar
Boyette, M., Abbas, H. K., and Connick, W. J. Jr. 1993. Evaluation of Fusarium oxysporum as a potential bioherbicide for sicklepod (Cassia obtusifolia), coffee senna (C. occidentalis), and hemp sesbania (Sesbania exaltata). Weed Sci. 41:678681.Google Scholar
Connick, W. J. Jr., Daigle, D. J., Boyette, C. D., Williams, K. S., Vinyard, B. T., and Quimby, P. C. Jr. 1996. Water activity and other factors that affect the viability of Colletotrichum truncatum conidia in wheat flour-Kaolin granules (“Pesta”). Biocontrol Sci. Technol. 6:277284.CrossRefGoogle Scholar
Connick, W. J. Jr., Daigle, D. J., Pepperman, A. B., Hebbar, K. P., Lumsden, R. D., Anderson, T. W., and Sands, D. C. 1998. Preparation of a stable granular formulation containing Fusarium oxysporum pathogenic to narcotic plants. Biol. Control 13:7984.Google Scholar
Gracia-Garza, J. A., Fravel, D. R., Bailey, B. A., and Hebbar, P. K. 1997. Dispersal of Fusarium oxysporum f. sp. erythroxyli and Fusarium oxysporum f. sp. melonis by ants. Phytopathology 88:185189.Google Scholar
Hebbar, K. P., Lewis, J. A., Poch, S. M., and Lumsden, R. D. 1996. Agricultural byproducts as substrates for growth, conidiation, and chlamydospore formation by a potential mycoherbicide, Fusarium oxysporum strain EN4. Biocontrol Sci. Technol. 6:263275.Google Scholar
Hebbar, K. P., Lewis, J. A., Poch, S. M., and Lumsden, R. D. 1997. Liquid fermentation to produce biomass of mycoherbicidal strains of Fusarium oxysporum . Appl. Microbiol. Biotechnol. 48:714719.Google Scholar
Hebbar, K. P., Lewis, J. A., Poch, S. M., and Lumsden, R. D. 1998. Formulation of mycoherbicidal strains of Fusarium oxysporum . Weed Sci. 26:501507.Google Scholar
Hildebrand, D. C. and McCain, A. H. 1978. The use of various substances for large scale production of Fusarium oxysporum f. sp. cannabis inoculum. Phytopathology 68:10991101.Google Scholar
Kremer, R. J. and Schulte, L. K. 1989. Influence of chemical treatment and Fusarium oxysporum on velvetleaf (Abutilon theophrasti). Weed Technol. 32:369374.CrossRefGoogle Scholar
McCain, A. H. and Noviello, C. 1985. Biological control of Cannabis sativa . Pages 635642 in Proceedings of the VI Symposium on Biological Control of Weeds. Vancouver: Agriculture Canada.Google Scholar
Pandey, A. K., Farkya, S., and Rajak, R. C. 1992. A preliminary evaluation of Fusarium spp. for biological control of Parthenium. J. Indian Bot. Soc. 71:103105.Google Scholar
Pilgeram, A. L., Anderson, T. W., Schultz, M. T., Dolgovskaya, M., and Sands, D. C. 1995. An effective host-specific pathogen of Papaver spp. Phytopathology 85:1118.Google Scholar
Sands, D. C., Ford, E. J., Miller, R. V., et al. 1997. Characterization of a vascular wilt of Erythroxylum coca caused by Fusarium oxysporum f. sp. erythroxyli forma specialis nova. Plant Dis. 81:501504.Google Scholar
Schippers, B. and Van Eck, W. H. 1981. Formation and survival of chlamydospores in Fusarium . Pages 250260 in Nelson, P. E., Tessin, T. A., and Cook, R. J., eds. Fusarium, Diseases, Biology and Taxonomy. University Park, PA: Pennsylvania State University Press.Google Scholar
Weidemann, G. J., Boyette, C. D., and Templeton, G. E. 1995. Utilization criteria for mycoherbicide. Pages 238251 in Biorational Pest Control Agents. Washington, D.C.: American Chemical Society.CrossRefGoogle Scholar
Weidemann, G. J. and Templeton, G. E. 1988. Efficacy and soil persistence of Fusarium solani f. sp. Cucurbita for control of Texas gourd (Cucurbita texana). Plant Dis. 72:3638.Google Scholar