Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-z8dxg Total loading time: 0.234 Render date: 2021-09-24T06:46:25.346Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

TRACTARIAN LOGICISM: OPERATIONS, NUMBERS, INDUCTION

Published online by Cambridge University Press:  21 October 2020

GREGORY LANDINI*
Affiliation:
UNIVERSITY OF IOWA IOWA CITY, IA 52241, USA E-mail: gregory-landini@uiowa.edu

Abstract

In his Tractatus, Wittgenstein maintained that arithmetic consists of equations arrived at by the practice of calculating outcomes of operations $\Omega ^{n}(\bar {\xi })$ defined with the help of numeral exponents. Since $Num$ (x) and quantification over numbers seem ill-formed, Ramsey wrote that the approach is faced with “insuperable difficulties.” This paper takes Wittgenstein to have assumed that his audience would have an understanding of the implicit general rules governing his operations. By employing the Tractarian logicist interpretation that the N-operator $N(\bar {\xi })$ and recursively defined arithmetic operators $\Omega ^{n}(\bar {\xi })$ are not different in kind, we can address Ramsey’s problem. Moreover, we can take important steps toward better understanding how Wittgenstein might have imagined emulating proof by mathematical induction.

Type
Research Article
Copyright
© Association for Symbolic Logic 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anscombe, G. E. M. (1959). An Introduction to Wittgensteins Tractatus. New York: Harper and Row.Google Scholar
Cuter, J. V. G. (2005). Operations and truth-operations in the tractatus. Philosophical Investigations, 28, 6375.10.1111/j.1467-9205.2005.00241.xCrossRefGoogle Scholar
Fitch, F. (1974). Elements of Combinatory Logic. New Haven, CT: Yale University Press.Google Scholar
Floyd, J. (2001). Number and ascriptions of number in Wittgenstein’s tractatus. In Floyd, J., and Sheih, S., editors. Future Pasts: The Analytic Tradition in Twentieth Century Philosophy. Oxford: Oxford University Press.10.1093/019513916X.001.0001CrossRefGoogle Scholar
Fogelin, R. (1982). Wittgenstein’s operator N. Analysis, 42, 124128.10.1093/analys/42.3.124CrossRefGoogle Scholar
Fogelin, R. (1987). Wittgenstein, second edition. London: Routledge & Kegan Paul.Google Scholar
Frascolla, P. (1994). Wittgenstein’s Philosophy of Mathematics . New York: Routledge.Google Scholar
Frascolla, P. (1997). The tractarian system of arithmetic. Synthese , 112, 353378.10.1023/A:1004952810156CrossRefGoogle Scholar
Geach, P. T. (1981). Wittgenstein’s operator N. Analysis , 41, 168171.10.1093/analys/41.4.168CrossRefGoogle Scholar
Geach, P. T. (1982). More on Wittgenstein’s operator N. Analysis, 42, 127128.10.1093/analys/42.3.127CrossRefGoogle Scholar
Landini, G. (1996). The definability of the set of natural numbers in the 1925 Principia Mathematica . Journal of Philosophical Logic, 25, 597615.10.1007/BF00265255CrossRefGoogle Scholar
Landini, G. (2007). Wittgenstein’s Apprenticeship with Russell. Cambridge: Cambridge University Press.10.1017/CBO9780511487255CrossRefGoogle Scholar
Landini, G. (2013). Review of The Evolution of Principia Mathematica, ed. by Linsky B. (Cambridge, 2011). History and Philosophy of Logic, 34, 7997.10.1080/01445340.2012.743288CrossRefGoogle Scholar
Landini, G. (2018). On the curious calculi of Wittgenstein and spencer-brown. Journal of the History of Analytic Philosophy, 6, 128.Google Scholar
Lowe, V., & Schneewind, J. B. (1990). Alfred North Whitehead: The Man and His Work, Vol. II. Baltimore: Johns Hopkins Press, 19101947.Google Scholar
Marion, M., & Mitsuhiro, O. (2018). Wittgenstein, Goodstein, and the origin of the uniqueness rule for primitive recursive arithmetic. In Stern, D., editor. Wittgenstein in the 1930s: Between the Tractatus and the Investigations. Cambridge: Cambridge University Press, 253271.10.1017/9781108349260.016CrossRefGoogle Scholar
Mendelson, E. (2010). Introduction to Mathematical Logic, fifth edition. London: Chapman & Hall.Google Scholar
Moore, G. E. (2016) In Stern, D. G., Rogers, B., Citron, G., editors. Wittgenstein: Lectures, Cambridge 1930-1933: From the Notes of G. E. Moore. Cambridge: Cambridge University Press.Google Scholar
Potter, M. (2000). Reason's Nearest Kin:Philosophies of Mathematics from Kant to Carnap, Oxford: Oxford University Press.Google Scholar
Ramsey, F. P. (1931). The foundations of mathematics, in Braithwaite, R. B., editor. The Foundations of Mathematics and Other Essays by Frank Plumpton Ramsey. New York: Harcourt Brace and Co., p. 1931.Google Scholar
Rodgers, B., & Wehmeier, K. (2012). Tractarian first order logic: Identity and the N-operator. Review of Symbolic Logic, 5, 538573.10.1017/S1755020312000032CrossRefGoogle Scholar
Russell, B. (1968). The Autobiography of Bertrand Russell , Vol. II. Boston, MA: Little Brown & Co., pp. 19141916.Google Scholar
Russell, B. (1990). Unpublished Correspondence between Russell and Wittgenstein. Brian McGuinness and G. H. von Wright. Russell: The Journal of the Bertrand Russell Archives, 10, 107108.Google Scholar
Soames, S. (1983). Generality, truth-functions, and experssive capacity in the tractatus. The Philosophical Review, 92, 573589.10.2307/2184881CrossRefGoogle Scholar
Soames, S. (2017). The Analytic Tradition in Philosophy: Volume 2, A New Vision. Princeton, NJ: Princeton University Press.10.2307/j.ctvc77c10CrossRefGoogle Scholar
Waismann, F. (1931). In McGuinness, B., editor (1979). Wittgenstein and the Vienna Circle. Oxford: Blackwell.Google Scholar
Wehmeier, K. (2004). Wittgenstein’s predicate logic. Notre Dame Journal of Formal Logic, 45, 111.10.1305/ndjfl/1094155275CrossRefGoogle Scholar
Whitehead, A. N. (1929). Process and Reality: An Essay in Cosmology. New York: Harper & Brothers.Google Scholar
Wittgenstein, L. (1971). In McGuinnesss, B. F., Nybert, T., and von Wright, G. H., with trans. by Pears, F. F., and McGuinness, B. M., Prototractatus: An Early Version of Tractatus Logio-Philosophicus. London: Routledge & Kegan Paul.Google Scholar
Wittgenstein, L. (1973). Letter of Sept. 1923. In von Wright, G. G., editor. Ludwig Wittgenstein: Letters to C. K. Ogden with and Appendix of Letters by Frank Plumpton Ramsey. Oxford: Basil Blackwell.Google Scholar
Wittgenstein, L. (PB). Philosophical Remarks. Oxford, UK: Basil Blackwell, 1975.Google Scholar
Wittgenstein, L. (1979). Notebooks 1914–1916, eds. von Wright, G. H. & Anscombe, G. E.M., Chicago: University of Chicago Press.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

TRACTARIAN LOGICISM: OPERATIONS, NUMBERS, INDUCTION
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

TRACTARIAN LOGICISM: OPERATIONS, NUMBERS, INDUCTION
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

TRACTARIAN LOGICISM: OPERATIONS, NUMBERS, INDUCTION
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *