Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-x2fkq Total loading time: 0.859 Render date: 2022-11-30T01:00:55.320Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

ON ZARDINI’S RULES FOR MULTIPLICATIVE QUANTIFICATION AS THE SOURCE OF CONTRA(DI)CTIONS

Published online by Cambridge University Press:  19 July 2022

UWE PETERSEN*
Affiliation:
ALTONAER STIFTUNG FÜR PHILOSOPHISCHE GRUNDLAGENFORSCHUNG (ASFPG) HAMBURG, GERMANY

Abstract

Certain instances of contraction are provable in Zardini’s system $\mathbf {IK}^\omega $ which causes triviality once a truth predicate and suitable fixed points are available.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Bacon, A. (2013). Curry’s paradox and $\omega $ -inconsistency. Studia Logica, 101(1), 19.CrossRefGoogle Scholar
Da Ré, B. & Rosenblatt, L. (2018). Contraction, infinitary quantifiers, and omega paradoxes. Journal of Philosophical Logic, 47(4), 611629.CrossRefGoogle Scholar
Fjellstad, A. (2018). Infinitary contraction-free revenge. Thought, 7(3), 179189.CrossRefGoogle Scholar
Fjellstad, A. (2020). A note on the cut-elimination proof in “truth without contra(di)ction”. The Review of Symbolic Logic, 13(4), 882886.CrossRefGoogle Scholar
Fjellstad, A. & Olsen, J.-F. (2021). IKT ω and Łukasiewicz-models. Notre Dame Journal of Formal Logic, 62(2), 882886.CrossRefGoogle Scholar
Petersen, U. (2000). Logic without contraction as based on inclusion and unrestricted abstraction. Studia Logica, 64, 365403.CrossRefGoogle Scholar
Petersen, U. (2002). Diagonal Method and Dialectical Logic. Tools, Materials, and Groundworks for a Logical Foundation of Dialectic and Speculative Philosophy. Osnabrück: Der Andere. Available at https://www.academia.edu.Google Scholar
Schütte, K. (1977). Proof Theory. Berlin–Heidelberg–New York: Springer.CrossRefGoogle Scholar
Shaw-Kwei, M. (1954). Logical paradoxes for many-valued systems. The Journal of Symbolic Logic, 19, 3740.CrossRefGoogle Scholar
Takeuti, G. (1987). Proof Theory (second edition). Studies in Logic and the Foundations of Mathematics, Vol. 81. Amsterdam: North-Holland.Google Scholar
Zardini, E. (2011). Truth without contra(di)ction. The Review of Symbolic Logic, 4(4), 498535.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ON ZARDINI’S RULES FOR MULTIPLICATIVE QUANTIFICATION AS THE SOURCE OF CONTRA(DI)CTIONS
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

ON ZARDINI’S RULES FOR MULTIPLICATIVE QUANTIFICATION AS THE SOURCE OF CONTRA(DI)CTIONS
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

ON ZARDINI’S RULES FOR MULTIPLICATIVE QUANTIFICATION AS THE SOURCE OF CONTRA(DI)CTIONS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *