Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-45s75 Total loading time: 1.471 Render date: 2021-11-29T15:21:42.057Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Mid-upper arm circumference as a screening tool for identifying adolescents with thinness

Published online by Cambridge University Press:  30 October 2020

Binyam Girma Sisay*
Affiliation:
Department of Nutrition and Dietetics, School of Public Health, Addis Ababa University, Addis Ababa 9086, Ethiopia
Demewoz Haile
Affiliation:
Department of Nutrition and Dietetics, School of Public Health, Addis Ababa University, Addis Ababa 9086, Ethiopia
Hamid Yimam Hassen
Affiliation:
Department of Primary and Interdisciplinary Care, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
Seifu Hagos Gebreyesus
Affiliation:
Department of Nutrition and Dietetics, School of Public Health, Addis Ababa University, Addis Ababa 9086, Ethiopia
*
*Corresponding author: Email binyamgirma3@gmail.com

Abstract

Objective:

To evaluate the performance of mid-upper arm circumference (MUAC) to identify thinness in the late adolescence period (aged 15–19 years) in Ethiopia.

Design:

We conducted a school-based cross-sectional study. The receiver operating characteristics curve was used to examine the validity of MUAC compared with BMI Z-score to identify adolescents with thinness (BMI Z-score <−2 sd).

Settings:

Fifteen high schools (grade 9–12) located in Addis Ababa, Ethiopia.

Participants:

A total of 851 adolescent (456 males and 395 females) were included in the study.

Results:

The prevalence of thinness and severe thinness among high-school adolescents in Addis Ababa was 9·5 % (95 % CI 7·7, 11·7 %). The overall AUC for MUAC against BMI Z-score <−2 SD was 0·91 (95 % CI 0·88, 0·93). The optimal MUAC cut-offs to identify thinness were 23·3 cm for males and 22·6 cm for females. These cut-off points give high sensitivity and specificity for both males (a sensitivity of 87·9 % and a specificity of 75·9 %) and females (a sensitivity of 100 % and a specificity 88·2 %).

Conclusions:

MUAC has a comparable level of accuracy with BMI Z-score to identify thinness in adolescents aged 15–19 years. Hence, MUAC could be used as an alternative tool for surveillance and screening of thinness among adolescents aged 15–19 years. The optimum cut-off proposed by this study may incorrectly include a large number of adolescents when used in a relatively well-nourished population. In this situation, it would be necessary to choose a cut-off with greater positive predictive value.

Type
Research paper
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Spear, BA (2002) Adolescent growth and development. J Am Diet Assoc 102, S23S29.CrossRefGoogle ScholarPubMed
Das, JK, Salam, RA, Thornburg, KL et al. (2017) Nutrition in adolescents: physiology, metabolism, and nutritional needs. Ann N Y Acad Sci 1393, 2133.Google ScholarPubMed
Christian, P & Smith, ER (2018) Adolescent under nutrition: global Burden, Physiology, and Nutritional Risks. Ann Nutr Metabol 72, 316328.CrossRefGoogle Scholar
DiMeglio, G (2000) Nutrition in adolescence. Pediatr Rev 21, 3233.CrossRefGoogle ScholarPubMed
Berhe, K, Kidanemariam, A, Gebremariam, G et al. (2019) Prevalence and associated factors of adolescent under nutrition in Ethiopia: a systematic review and meta-analysis. BMC Nutr 5, 49.Google Scholar
Melaku, YA, Zello, GA, Gill, TK et al. (2015) Prevalence and factors associated with stunting and thinness among adolescent students in Northern Ethiopia: a comparison to World Health Organization standards. Arch Public Health 73, 44.CrossRefGoogle ScholarPubMed
Gebregyorgis, T, Tadesse, T & Atenafu, A (2016) Prevalence of thinness and stunting and associated factors among adolescent school girls in Adwa Town, North Ethiopia. Int J Food Sci 2016, 8323982.CrossRefGoogle ScholarPubMed
World Health Organization (2005) Nutrition in Adolescence: Issues and Challenges for the Health Sector: Issues in Adolescent Health and Development. Geneva: World Health Organization.Google Scholar
Dreizen, S, Spirakis, CN & Stone, RE (1967) A comparison of skeletal growth and maturation in undernourished and well-nourished girls before and after menarche. J Pediatr 70, 256263.CrossRefGoogle ScholarPubMed
Peeling, AN & Smart, JL (1994) Review of literature showing that under nutrition affects the growth rate of all processes in the brain to the same extent. Metab Brain Dis 9, 3342.Google Scholar
Belachew, T, Hadley, C, Lindstrom, D et al. (2011) Food insecurity, school absenteeism and educational attainment of adolescents in Jimma Zone Southwest Ethiopia: a longitudinal study. Nutr J 10, 29.CrossRefGoogle ScholarPubMed
Frisch, RE (1985) Fatness, menarche, and female fertility. Perspect Biol Med 28, 611633.Google ScholarPubMed
Deshmukh, PR, Gupta, SS, Bharambe, MS et al. (2006) Nutritional status of adolescents in rural Wardha. Indian J Pediatr 73, 139141.Google ScholarPubMed
Macallan, D (2009) Infection and malnutrition. Medicine 37, 525528.CrossRefGoogle Scholar
WHO (2002) The World Health Report 2002: Reducing Risks, Promoting Healthy Life. Geneva: World Health Organization.Google Scholar
Naeye, RL (1981) Teenaged and pre-teenaged pregnancies: consequences of the fetal-maternal competition for nutrients. Pediatrics 67, 146150.Google ScholarPubMed
Jeyakumar, A, Ghugre, P & Gadhave, S (2013) Mid-Upper-Arm Circumference (MUAC) as a Simple measure to assess the nutritional status of adolescent girls as compared with BMI. Infant Child Adolesc Nutr 5, 2225.CrossRefGoogle Scholar
de Onis, M, Onyango, AW, Borghi, E et al. (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85, 660667.CrossRefGoogle ScholarPubMed
Neovius, M, Linne, Y, Barkeling, B et al. (2004) Discrepancies between classification systems of childhood obesity. Obes Rev 5, 105114.CrossRefGoogle ScholarPubMed
Craig, E, Bland, R, Ndirangu, J et al. (2014) Use of mid-upper arm circumference for determining overweight and overfatness in children and adolescents. Arch Dis Child 99, 763766.CrossRefGoogle ScholarPubMed
Dasgupta, A, Butt, A, Saha, TK et al. (2010) Assessment of malnutrition among adolescents: can BMI be replaced by MUAC. Indian J Community Med 35, 276279.CrossRefGoogle ScholarPubMed
Saeed, HA, Mogendi, JB, Akparibo, R et al. (2015) Reliability of mid-upper arm circumference measurements taken by community health nurses. Curr Res in Nutr Food Sci 3, 2735.CrossRefGoogle Scholar
Myatt, M, Khara, T & Collins, S (2006) A review of methods to detect cases of severely malnourished children in the community for their admission into community-based therapeutic care programs. Food Nutr Bull 27, S7S23.CrossRefGoogle ScholarPubMed
Nguyen, P, Ramakrishnan, U, Katz, B et al. (2014) Mid-upper-arm and calf circumferences are useful predictors of underweight in women of reproductive age in northern Vietnam. Food Nutr Bull 35, 301311.CrossRefGoogle ScholarPubMed
Sultana, T, Karim, MN, Ahmed, T et al. (2015) Assessment of under nutrition of Bangladeshi adults using anthropometry: can body mass index be replaced by mid-upper-arm-circumference? PLoS One 10, e0121456.CrossRefGoogle ScholarPubMed
Benítez Brito, N, Suárez Llanos, JP, Fuentes Ferrer, M et al. (2016) Relationship between mid-upper arm circumference and body mass index in inpatients. PLoS One 11, e0160480.Google ScholarPubMed
Das, A, Saimala, G, Reddy, N et al. (2020) Mid-upper arm circumference as a substitute of the body mass index for assessment of nutritional status among adult and adolescent females: learning from an impoverished Indian state. Public Health 179, 6875.Google ScholarPubMed
Tang, AM, Chung, M, Dong, KR et al. (2020) Determining a global mid-upper arm circumference cut-off to assess underweight in adults (men and non-pregnant women). Public Health Nutr, 110. doi: 10.1017/S1368980020000397.CrossRefGoogle Scholar
Sethi, V, Gupta, N, Pedgaonkar, S et al. (2019) Mid-upper arm circumference cut-offs for screening thinness and severe thinness in Indian adolescent girls aged 10–19 years in field settings. Public Health Nutr 22, 21892199.CrossRefGoogle ScholarPubMed
De, K (2016) Assessment of nutritional status of adolescent girls by mid-upper arm circumferences of Paschim Medinipur, India. Primary Health Care 6, 4.Google Scholar
Freedman, DS, Wang, J, Thornton, JC et al. (2008) Racial/ethnic differences in body fatness among children and adolescents. Obesity 16, 11051111.CrossRefGoogle ScholarPubMed
Ethiopia. Office of the Population and Housing Census Commission (2008) Summary and Statistical Report of the 2007 Population and Housing Census. Addis Ababa: Federal Democratic Republic of Ethiopia, Population Census Commission.Google Scholar
Lohman, TG, Roche, AF & Martorell, R (1988) Anthropometric Standardization Reference Manual. IL: Human Kinetics Books Champaign.Google Scholar
WHO (2007) Growth reference for 5–19 years. https://www.who.int/growthref/who2007_bmi_for_age/en/ (accessed May 2019).Google Scholar
WHO (2007) Growth reference 5–19 years. https://www.who.int/growthref/who2007_height_for_age/en/ (accessed October 2019).Google Scholar
Ulijaszek, SJ & Kerr, DA (1999) Anthropometric measurement error and the assessment of nutritional status. Br J Nutr 82, 165177.CrossRefGoogle ScholarPubMed
Swets, JA (1988) Measuring the accuracy of diagnostic systems. Science 240, 12851293.Google ScholarPubMed
Youden, WJ (1950) Index for rating diagnostic tests. Cancer 3, 3235.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Bossuyt, PM, Reitsma, JB, Bruns, DE et al. (2015) STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 351, h5527.CrossRefGoogle ScholarPubMed
Šimundić, A-MJE (2009) Measures of diagnostic accuracy: basic definitions. EJIFCC 19, 203.Google ScholarPubMed
Eusebi, P (2013) Diagnostic accuracy measures. Cerebrovasc Dis 36, 267272.Google ScholarPubMed
Dasgupta, A, Butt, A, Saha, TK et al. (2010) Assessment of malnutrition among adolescents: can BMI be replaced by MUAC. Indian J Community Med 35, 276.Google ScholarPubMed
Bhargava, M, Bhargava, A, Ghate, SD et al. (2020) Nutritional status of Indian adolescents (15–19 years) from National Family Health Surveys 3 and 4: revised estimates using WHO 2007 Growth reference. PLoS One 15, e0234570.CrossRefGoogle ScholarPubMed
Supplementary material: File

Sisay et al. Supplementary Materials

Sisay et al. Supplementary Materials 1

Download Sisay et al. Supplementary Materials(File)
File 32 KB
Supplementary material: File

Sisay et al. Supplementary Materials

Sisay et al. Supplementary Materials 2

Download Sisay et al. Supplementary Materials(File)
File 15 KB
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mid-upper arm circumference as a screening tool for identifying adolescents with thinness
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mid-upper arm circumference as a screening tool for identifying adolescents with thinness
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mid-upper arm circumference as a screening tool for identifying adolescents with thinness
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *