Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-2p87r Total loading time: 0.193 Render date: 2021-10-19T23:48:53.101Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Identification and reproducibility of dietary patterns assessed with a FFQ among women planning pregnancy

Published online by Cambridge University Press:  22 March 2021

Shan Xuan Lim
Affiliation:
Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
Marjorelee T Colega
Affiliation:
Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
M Na’im M Ayob
Affiliation:
Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
Sian M Robinson
Affiliation:
AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle upon Tyne, UK NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
Keith M Godfrey
Affiliation:
Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK NIHR Southampton Biomedical Research Centre, University Hospital Southampton, NHS Foundation Trust, Southampton, UK
Jonathan Y Bernard
Affiliation:
Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore Université de Paris, Centre for Research in Epidemiology and StatisticS (CRESS), Inserm, INRAE, Paris, France
Yung Seng Lee
Affiliation:
Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Khoo Teck Puat-National University Children’s Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
Kok Hian Tan
Affiliation:
Duke-NUS Medical School, Singapore, Singapore Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
Fabian Yap
Affiliation:
Duke-NUS Medical School, Singapore, Singapore Department of Paediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
Lynette PC Shek
Affiliation:
Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Khoo Teck Puat-National University Children’s Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
Yap Seng Chong
Affiliation:
Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Johan G Eriksson
Affiliation:
Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
Jerry KY Chan
Affiliation:
Duke-NUS Medical School, Singapore, Singapore Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
Shiao Yng Chan
Affiliation:
Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Mary FF Chong*
Affiliation:
Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
*
*Corresponding author: Email mary_chong@nus.edu.sg

Abstract

Objective:

To identify a posteriori dietary patterns among women planning pregnancy and assess the reproducibility of these patterns in a subsample using two dietary assessment methods.

Design:

A semi-quantitative FFQ was administered to women enrolled in the Singapore PREconception Study of long-Term maternal and child Outcomes study. Dietary patterns from the FFQ were identified using exploratory factor analysis (EFA). In a subsample of women (n 289), 3-d food diaries (3DFD) were also completed and analysed. Reproducibility of the identified patterns was assessed using confirmatory factor analysis (CFA) in the subsample, and goodness of fit of the CFA models was examined using several fit indices. Subsequently, EFA was conducted in the subsample and dietary patterns of the FFQ and the 3DFD were compared.

Setting:

Singapore.

Participants:

1007 women planning pregnancy (18–45 years).

Results:

Three dietary patterns were identified from the FFQ: the ‘Fish, Poultry/Meat and Noodles’ pattern was characterised by higher intakes of fish, poultry/meat and noodles in soup; ‘Fast Food and Sweetened Beverages’ pattern was characterised by higher intakes of fast food, sweetened beverages and fried snacks; ‘Bread, Legumes and Dairy’ pattern was characterised by higher intakes of buns/ethnic breads, nuts/legumes and dairy products. The comparative fit indices from the CFA models were 0·79 and 0·34 for the FFQ and 3DFD of the subsample, respectively. In the subsample, three similar patterns were identified in the FFQ while only two for the 3DFD.

Conclusions:

Dietary patterns from the FFQ are reproducible within this cohort, providing a basis for future investigations on diet and health outcomes.

Type
Research paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, L-W, Low, YL, Fok, D et al. (2014) Dietary changes during pregnancy and the postpartum period in Singaporean Chinese, Malay and Indian women: the GUSTO birth cohort study. Public Health Nutr 17, 19301938.CrossRefGoogle ScholarPubMed
Hillier, SE & Olander, EK (2017) Women’s dietary changes before and during pregnancy: a systematic review. Midwifery 49, 1931.CrossRefGoogle ScholarPubMed
Cuco, G, Fernandez-Ballart, J, Sala, J et al. (2006) Dietary patterns and associated lifestyles in preconception, pregnancy and postpartum. Eur J Clin Nutr 60, 364371.CrossRefGoogle ScholarPubMed
Olson, CM (2005) Tracking of food choices across the transition to motherhood. J Nutr Educ Behav 37, 129136.CrossRefGoogle ScholarPubMed
Tovar, A, Kaar, JL, McCurdy, K et al. (2019) Maternal vegetable intake during and after pregnancy. BMC Pregnancy Childbirth 19, 267.CrossRefGoogle ScholarPubMed
Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.CrossRefGoogle ScholarPubMed
Reedy, J, Subar, AF, George, SM et al. (2018) Extending methods in dietary patterns research. Nutrients 10, 571.CrossRefGoogle ScholarPubMed
Edefonti, V, De Vito, R, Dalmartello, M et al. (2020) Reproducibility and validity of a posteriori dietary patterns: a systematic review. Adv Nutr 11, 293326 .CrossRefGoogle ScholarPubMed
Asghari, G, Rezazadeh, A, Hosseini-Esfahani, F et al. (2012) Reliability, comparative validity and stability of dietary patterns derived from an FFQ in the Tehran Lipid and Glucose Study. Br J Nutr 108, 11091117.CrossRefGoogle ScholarPubMed
Crozier, SR, Inskip, HM, Godfrey, KM et al. (2008) Dietary patterns in pregnant women: a comparison of food-frequency questionnaires and 4 d prospective diaries. Br J Nutr 99, 869875.CrossRefGoogle ScholarPubMed
Hu, FB, Rimm, E, Smith-Warner, SA et al. (1999) Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr 69, 243249.CrossRefGoogle ScholarPubMed
Khani, BR, Ye, W, Terry, P et al. (2004) Reproducibility and validity of major dietary patterns among Swedish women assessed with a food-frequency questionnaire. J Nutr 134, 15411545.CrossRefGoogle ScholarPubMed
Loy, SL & Jan Mohamed, HJ (2013) Relative validity of dietary patterns during pregnancy assessed with a food frequency questionnaire. Int J Food Sci Nutr 64, 668673.CrossRefGoogle ScholarPubMed
Okubo, H, Murakami, K, Sasaki, S et al. (2010) Relative validity of dietary patterns derived from a self-administered diet history questionnaire using factor analysis among Japanese adults. Public Health Nutr 13, 10801089.CrossRefGoogle ScholarPubMed
Togo, P, Heitmann, BL, Sorensen, TI et al. (2003) Consistency of food intake factors by different dietary assessment methods and population groups. Br J Nutr 90, 667678.CrossRefGoogle ScholarPubMed
Schoenaker, DA, Soedamah-Muthu, SS, Callaway, LK et al. (2015) Prepregnancy dietary patterns and risk of developing hypertensive disorders of pregnancy: results from the Australian Longitudinal Study on Women’s Health. Am J Clin Nutr 102, 94101.CrossRefGoogle ScholarPubMed
Grieger, JA, Grzeskowiak, LE & Clifton, VL (2014) Preconception dietary patterns in human pregnancies are associated with preterm delivery. J Nutr 144, 10751080.CrossRefGoogle ScholarPubMed
Judd, SE, Letter, AJ, Shikany, JM et al. (2015) Dietary patterns derived using exploratory and confirmatory factor analysis are stable and generalizable across race, region, and gender subgroups in the REGARDS study. Front Nutr 1, 2929.CrossRefGoogle ScholarPubMed
Lau, C, Glümer, C, Toft, U et al. (2008) Identification and reproducibility of dietary patterns in a Danish cohort: the Inter99 study. Br J Nutr 99, 10891098.CrossRefGoogle Scholar
Loo, EXL, Soh, SE, Loy, SL et al. (2021) Cohort profile: Singapore preconception study of long-term maternal and child outcomes (S-PRESTO). Eur J Epidemiol 36, 129142.CrossRefGoogle Scholar
Bernard, JY, Ng, S, Natarajan, P et al. (2019) Associations of physical activity levels and screen time with oral glucose tolerance test profiles in Singaporean women of reproductive age actively trying to conceive: the S-PRESTO study. Diabet Med 36, 888897.Google ScholarPubMed
Loy, SL, Cheung, YB, Soh, SE et al. (2018) Female adiposity and time-to-pregnancy: a multiethnic prospective cohort. Hum Reprod 33, 21412149.CrossRefGoogle ScholarPubMed
Deurenberg-Yap, M, Li, T, Tan, WL et al. (2000) Validation of a semiquantitative food frequency questionnaire for estimation of intakes of energy, fats and cholesterol among Singaporeans. Asia Pac J Clin Nutr 9, 282288.CrossRefGoogle ScholarPubMed
Neelakantan, N, Whitton, C, Seah, S et al. (2016) Development of a semi-quantitative food frequency questionnaire to assess the dietary intake of a multi-ethnic urban Asian population. Nutrients 8, 528.CrossRefGoogle ScholarPubMed
Chia, AR, de Seymour, JV, Colega, M et al. (2016) A vegetable, fruit, and white rice dietary pattern during pregnancy is associated with a lower risk of preterm birth and larger birth size in a multiethnic Asian cohort: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study. Am J Clin Nutr 104, 14161423.CrossRefGoogle Scholar
Block, G, Hartman, AM, Dresser, CM et al. (1986) A data-based approach to diet questionnaire design and testing. Am J Epidemiol 124, 453469.CrossRefGoogle ScholarPubMed
Ambrosini, GL, O’Sullivan, TA, de Klerk, NH et al. (2011) Relative validity of adolescent dietary patterns: a comparison of a FFQ and 3 d food record. Br J Nutr 105, 625633.CrossRefGoogle ScholarPubMed
Alvin, RC (2002) Factor analysis. In Methods of Multivariate Analysis, 2nd ed, pp. 408450. New York: John Wiley and Sons, Inc.Google Scholar
Hair, JF, Black, WC & Babin, BJ (2010) Chapter 3 – Factor analysis. In Multivariate Data Analysis: A Global Perspective. London: Pearson Education.Google Scholar
Newby, PK & Tucker, KL (2004) Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev 62, 177203.CrossRefGoogle ScholarPubMed
Lorenzo-Seva, U & Ten Berge, JM (2006) Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology (Gott) 2, 5764.CrossRefGoogle Scholar
Newby, PK, Weismayer, C, Akesson, A et al. (2006) Long-term stability of food patterns identified by use of factor analysis among Swedish women. J Nutr 136, 626633.CrossRefGoogle ScholarPubMed
Schulze, MB, Hoffmann, K, Kroke, A et al. (2003) Risk of hypertension among women in the EPIC-Potsdam Study: comparison of relative risk estimates for exploratory and hypothesis-oriented dietary patterns. Am J Epidemiol 158, 365373.CrossRefGoogle ScholarPubMed
Hooper, D, Coughlan, J & Mullen, M (2008) Structural equation modelling: guidelines for determining model fit. EJBRM 6, 5359.Google Scholar
Health Promotion Board Singapore (2018) National Nutrition Survey 2018 Shows Gradual Improvements in Singaporeans’ Dietary Habits; available at https://www.hpb.gov.sg/article/national-nutrition-survey-2018-shows-gradual-improvements-in-singaporeans-dietary-habits (accessed January 2021).Google Scholar
Health Promotion Board Singapore (2011) Report of the National Nutrition Survey 2010; available at https://www.hpb.gov.sg/docs/default-source/pdf/nns-2010-report.pdf?sfvrsn=18e3f172_2 (accessed February 2021).Google Scholar
Maskarinec, G, Novotny, R & Tasaki, K (2000) Dietary patterns are associated with body mass index in multiethnic women. J Nutr 130, 30683072.CrossRefGoogle ScholarPubMed
Willett, W & Hatch, E (2013) Chapter 6: Reproducibility and validity of food frequency questionnaires. In Nutritional Epidemiology, 3rd ed. [electronic resource] Oxford: Oxford University Press.Google Scholar
Wise, LA, Wesselink, AK, Hatch, EE et al. (2020) Changes in behavior with increasing pregnancy attempt time: a prospective cohort study. Epidemiology 31, 659667.CrossRefGoogle ScholarPubMed
Beck, KL, Kruger, R, Conlon, CA et al. (2012) The relative validity and reproducibility of an iron food frequency questionnaire for identifying iron-related dietary patterns in young women. J Acad Nutr 112, 11771187.CrossRefGoogle ScholarPubMed
Hong, X, Ye, Q, Wang, Z et al. (2016) Reproducibility and validity of dietary patterns identified using factor analysis among Chinese populations. Br J Nutr 116, 842852.CrossRefGoogle ScholarPubMed
Liu, X, Wang, X, Lin, S et al. (2015) Reproducibility and validity of a food frequency questionnaire for assessing dietary consumption via the dietary pattern method in a Chinese rural population. PLoS One 10, e0134627.CrossRefGoogle Scholar
Cade, JE, Burley, VJ, Warm, DL et al. (2004) Food-frequency questionnaires: a review of their design, validation and utilisation. Nutr Res Rev 17, 522.CrossRefGoogle ScholarPubMed
Livingstone, MBE & Black, AE (2003) Markers of the validity of reported energy intake. J Nutr 133, 895S920S.CrossRefGoogle ScholarPubMed
Supplementary material: File

Lim et al. supplementary material

Lim et al. supplementary material

Download Lim et al. supplementary material(File)
File 46 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Identification and reproducibility of dietary patterns assessed with a FFQ among women planning pregnancy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Identification and reproducibility of dietary patterns assessed with a FFQ among women planning pregnancy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Identification and reproducibility of dietary patterns assessed with a FFQ among women planning pregnancy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *