Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-27T11:34:33.078Z Has data issue: false hasContentIssue false

Hypoglycaemic and anti-hyperglycaemic drugs for the control of diabetes

Published online by Cambridge University Press:  28 February 2007

C. J. Bailey
Affiliation:
Department of Pharmaceutical Sciences, Aston University, Birmingham B4 7ET
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1991

References

Alberti, K. G. M. M. & Gries, F. A. (1988). Management of non-insulin-dependent diabetes mellitus in Europe: a consensus view. Diabetic Medicine 5, 275281.CrossRefGoogle Scholar
Ashcroft, F. M., Ashcroft, S. J. H. & Harrison, D. E. (1988). Properties of single potassium channels modulated by glucose in rat pancreatic β cells. Journal of Physiology 400, 501527.CrossRefGoogle ScholarPubMed
Ashcroft, S. J. H. & Ashcroft, F. M. (1990). Properties and functions of ATP-sensitive K-channels. Cellular Signalling 2, 197214.CrossRefGoogle ScholarPubMed
Bailey, C. J. (1988). Metformin revisited: its actions and indications for use. Diabetic Medicine 5, 315320.CrossRefGoogle ScholarPubMed
Bailey, C. J. & Flatt, P. R. (1990). New Antidiabetic Drugs. London: Smith-Gordon.Google Scholar
Bailey, C. J., Flatt, P. R. & Marks, V. (1989). Drugs inducing hypoglycaemia. Pharmacology and Therapeutics 42, 361384.CrossRefGoogle Scholar
Bailey, C. J., Flatt, P. R., Wilcock, C. & Day, C. (1990). Antihyperglycaemic mechanism of action of metformin. In Frontiers in Diabetes Research. Lessons from Animal Diabetes, vol. 3. pp. 277282 [Shafrir, E., editor]. London: Smith-GordonGoogle Scholar
Bailey, C. J. & Nattrass, M. (1988). Treatment - metformin. Balliere's Clinical Endocrinology and Merabolism 2, 455476.CrossRefGoogle ScholarPubMed
Bailey, C. J. & Puah, J. A. (1986). Effect of metformin on glucose metabolism in mouse soleus muscle. Diabète et Métabolisme 12, 212218.Google ScholarPubMed
Beck-Nielscn, H., Hother-Nielsen, O. & Pedersen, O. (1988). Mechanism of action of sulphonylureas with special reference to the extrapancreatic effect: an overview. Diabetic Medicine 5, 613620.CrossRefGoogle Scholar
Boyd, A. E. (1988). Sulfonylurea receptors, ion channels, and fruit flies. Diabetes 37, 847850.CrossRefGoogle ScholarPubMed
Campbell, I. W. (1990). Sulphonylureas and Metformin: Efficacy and Inadequacy. In New Antidiabetic Drugs, pp. 3351 [Bailey, C. J. and Flatt, P. R., editors]. London: Smith-GordonGoogle Scholar
Caro, J. F. (1990). Effects of glyburide on carbohydratc metabolism and insulin action in the liver. American Journal of Medicine 89, Suppl. 2A, 17S25S.CrossRefGoogle Scholar
Clarke, B. F. & Campbell, I. W. (1977). Comparison of metformin and chlorpropamide in non-obese, maturity-onset diabetics uncontrolled by diet. British Medical Journal 2, 15761578.CrossRefGoogle ScholarPubMed
Clarke, B. F. & Duncan, L. J. P. (1968). Comparison of chlorpropamide and metformin treatment on weight and blood glucose of uncontrolled obese diabetics. Lancet i, 123126.CrossRefGoogle Scholar
Consoli, A., Nurjham, N., Capani, F. & Gevich, J. E. (1989). Predominant role of gluconcogenesis in increased hepatic glucose production in NIDDM. Diabetes 38, 550557.CrossRefGoogle Scholar
Cooper, R., Vila, M. C., Watson, J. E., Nair, G., Pollet, R. J., Standaert, M. & Farese, R. V. (1990). Sulfonylurea-stimulated glucose transport association with diacylglycerol-like activation of protein kinase C in BC3HI myocytes. Diabetes 39, 13991407.CrossRefGoogle Scholar
DeFronzo, K. A. (1988). The triumvirate: β-cell, muscle. liver. A collusion responsible for NIDDM. Diabetes 37, 667687.Google ScholarPubMed
Faber, O. K., Beck-Niclsen, H., Binder, C., Butzer, P., Damsgaard, E. M., Froland, F., Hjolland, E., Lindskov, H. O., Melander, A., Pedersen, O., Petersen, P., Sorensen, N. S. & Watilin-Boll, E. (1990). Acute actions of sulfonylurea drugs during long-term treatment of NIDDM. Diabetes Care 13, Suppl. 3, 2631.CrossRefGoogle Scholar
Ferner, R. E. & Chaplin, S. (1987). The relationship between the pharmacokinetics and pharmacodynamic effectsof oral hypoglycaemic drugs. Clinical Pharmacokirieiics 12, 379401.CrossRefGoogle Scholar
Firth, R. G., Bell, P. M. & Rizza, R. A. (1986). Effects of tolazamide and exogenous insulin on insulin action in patients with non-insulin-dependent diabetes mellitus. New England Journal of Medicine 314, 12801286.CrossRefGoogle ScholarPubMed
Gavin, J. R. (1985). Dual actions of sulfonylureas and glyburide: receptor and post-receptor effects. American Journal of Medicine 79, Suppl. 3B, 3442.CrossRefGoogle Scholar
Gorus, F. K., Schuit, F. C., Veld, P. A. I., Gepts, W. & Pipcleers, D. G. (1988). Interaction of sulfonylureas with pancreatic β-cells: a study with glyburide. Diabetes 37, 10901095.Google Scholar
Henquin, J. C., Garrino, M. G., Nenquin, M. (1987). Stimulation of insulin release by benzoic acid derivativcs related to the non-sulphonylurea moiety of glibenclamide: structural requirements and cellular mechanisms. European Journal of Pharmucology 141, 243251.CrossRefGoogle Scholar
Jacobs, D. B., Hayes, G. R., Truglia, J. A. & Lockwood, D. H. (1986). Effects of metformin on insulin receptor tyrosine kinasc activity in rat adipocytes. Diabetologia 29, 798801.Google Scholar
Jacobs, D. B. & Jung, C. Y. (1985). Sulfonylurca potentiates insulin-induced recruitment of glucose transport carrier in rat adipocytes. Journal of Biological Chemistry 260, 25932596.Google Scholar
Josephkutty, S. & Potter, J. M. (1990). Comparison of tolbutamide and metformin in elderly diabetic patients. Diabetic Medicine 7, 510514.Google Scholar
Judzewitsch, K. G., Pfeiffer, M. A., Best, J. D., Beard, J. C., Halter, J. B. & Porte, D. (1982). Chronic chlorpropamidc therapy of noninsulin-dependent diabetes augments basal and stimulated insulin secretion by increasing islet sensitivity to glucose. Journal of Clinical Endocrinology and Merabolism 55, 321328.Google Scholar
Kolterman, O. G., Gray, R. S., Shapiro, G., Scarlett, J. A., Griffin, J. & Olefsky, J. M. (1984). The acute and chronic effects of sulfonylurea therapy in type II diabetic subjects. Diabetes 33, 346354.CrossRefGoogle ScholarPubMed
Lebovitz, H. E. (1990). Oral hypoglycemic agents. In Diabetes Mellitzts, Theory and Practice, th ed., pp. 554574 [Rifkin, H and Porte, D., editors]. New York: ElsevierGoogle Scholar
Lenzen, S., Tiedge, M. & Panten, U. (1986). Glibenclamide induces glucokinase in rat pancreatic islets and liver. Biochemical Pharmucology 35, 28412843.CrossRefGoogle ScholarPubMed
McGuinness, O. P. (1990). Effect of glyburide on hepatic glucose metabolism. American Journal of Medicine 89, Suppl. 2A, 26S37S.CrossRefGoogle Scholar
Malaisse, W. J. & Lcbrun, P. (1990). Mechanisms of sulfonylurea-induced insulin release. Diabetes Care 13. Suppl. 3, 917.Google Scholar
Maloff, B. L. & Lockwood, D. H. (1981). In vitro effects of a sulfonylurea on insulin action in adipocytes: potentiation of insulin-stimulated hexose transport. Journal of Clinical Investigation 68, 8590.Google Scholar
Martz, A., Jo, I. & Jung, C. Y. (1989). Sulfonylurea binding to adipocyte membranes and potentiation of insulin-stimulated hexose transport. Journal of Biological Chemistry 264, 1367213678.Google Scholar
Nattrass, M., Todd, P. G., Hinks, L., Lloyd, B. & Alberti, K. G. M. M. (1977). Comparative effects of phenformin, metformin and glibenclamide on metabolic rhythms in maturity-onset diabetics. Diabetologia 13, 145152.Google Scholar
Okuno, S., Inaba, M., Nishizawa, Y., Inoue, A. & Moril, H. (1988). Effect of sulphonylureas tolbutamide and glyburide on CAMP-dependent protein kinasc activity in rat liver cytosol. Diabetes 37, 857861.CrossRefGoogle Scholar
O'Meara, N. M., Shapiro, E. T., van Cauter, E. & Polonsky, K. S. (1990). Effect of glyburide on beta cell responsiveness to glucose in non-insulin-dependent diabetes mellitus. American Journal of Medicine 89, Suppl. 2A, 11S16S.CrossRefGoogle Scholar
Osegawa, M., Makino, H., Kanatsuka, A. & Kumagai, A. (1982). Effects of sulfonylureas on membranebound low Km cyclic AMP phosphodiesterase in rat fat cells. Biochemica et Biophysica Acta 721, 289296.CrossRefGoogle Scholar
Panten, U., Burgfeld, J., Goerke, F., Rennicke, M., Schwanstecher, M., Wallasch, A., Zunkler, B. J. & Lenzen, S. (1989). Control of insulin secretion by sulfonylureas. meglitinide and diazoxide in relation to their binding to the sulfonylurea receptor in pancreatic islcts. Biochemical Pharmacology 38, 12171229.Google Scholar
Patel, T. B. (1986). Effect of sulfonylureas on hepatic fatty acid oxidation. American Journal of Physiology 251, E241–E246.Google ScholarPubMed
Penicaud, L., Hitier, Y., Ferre, P. & Girard, J. (1989). Hypoglycaemic effect of metformin in genetically obese (fafa) rats results from an increased utilization of blood glucose by intestine. Biochemical Journal 262, 881885.CrossRefGoogle ScholarPubMed
Rains, S. G. H., Wilson, G. A., Richmond, W. & Elkeles, R. S. (1988). The effect of glibenclamide and metformin on serum lipoproteins in type 2 diabetes. Diabetic Medicine 5, 653658.CrossRefGoogle ScholarPubMed
Rossetti, L., DeFronzo, R. A., Gherzi, R., Stein, P., Andraghetti, G., Falzetti, G., Shulman, G. I., Klein-Robbenhaar, E. & Cordera, R. (1990). Effect of metformin treatment on insulin action in diabetic rats: in vivo and in vitro correlations. Metabolism 39, 425435.CrossRefGoogle ScholarPubMed
Sako, Y., Wasada, T., Umeda, F. & Ibayashi, H. (1986). Effect of glibenclamide on pancreatic hormone release from isolated perfused islets of normal and cysteamine-treated rats. Metabolism 35, 944949.CrossRefGoogle Scholar
Salhanick, A. I., Konowitz, P. & Amatruda, J. M. (1982). Potentiation of insulin action by a sulfonylurea in primary cultures of hepatocytes from normal and diabetic rats. Diabetes 32, 206212.CrossRefGoogle Scholar
Singh, R. M. & Nattrass, M. (1990). Diabetes mellitus and the control of hyperglycaeniia. In New Antidiabetic Drugs, pp. 118 [Bailey, C. J. and Flatt, P. R., editors]. London: Smith-GordonGoogle Scholar
Smith, R. J. (1990). Effects of sulfonylureas on muscle glucose homeostasis. American Journal of Medicine 89, Suppl. 2A, 38S43S.CrossRefGoogle Scholar
UK Prospective Diabetes Study (1985). UK prospective diabetes study. II. Reduction in HbA1c with basal insulin supplement, sulfonylurea, or biguanide therapy in maturity-onset diabetes. Diabetes 34, 793798.CrossRefGoogle Scholar
Wang, P. H., Beguinot, F. & Smith, R. J. (1987). Augmentation of the effects of insulin and insulin-like growth factors I and II on glucose uptake in cultured rat skeletal muscle cells by sulfonylureas. Diabetologia 30, 797803.Google Scholar
Wang, P. H., Moller, D., Flier, J. S., Nayak, R. C. & Smith, K. J. (1989). Coordinate regulation of glucose transporter function, number and gene expression by insulin and sulfonylureas in L6 rat skeletal muscle cells. Journal of Clinical Investigation 84, 6267.CrossRefGoogle ScholarPubMed
White, C., Rashed, H. & Patel, T. (1988). Sulfonylureas inhibit metabolic flux through rat liver pyruvate carboxylase reaction. Journal of Pharmacology and Experimental Therapeutics 246, 971974.Google ScholarPubMed