Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-30T22:29:19.219Z Has data issue: false hasContentIssue false

Circumstellar dust, IR spectroscopy, and mineralogy

Published online by Cambridge University Press:  30 December 2019

Kyung-Won Suh*
Affiliation:
Dept. of Astronomy and Space Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea email: kwsuh@chungbuk.ac.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the mineralogy of circumstellar dust grains around AGB stars as investigated through infrared spectroscopic studies. The expanding envelopes of AGB stars are chemically fresh because of the strong binding force of CO molecules. O-rich dust grains (silicates and oxides) form in O-rich envelopes and C-rich dust grains (amorphous carbon and SiC) form in C-rich envelopes. Amorphous silicate grains can be crystallized by annealing processes in various environments of AGB stars. We also discuss dust mineralogy for objects that have undergone chemical transition processes.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Begemann, B., Dorschner, J., Henning, T., et al. 1997, ApJ, 476, 199 CrossRefGoogle Scholar
Bertie, J. E., Labbé, H. J., & Whalley, E. 1969, J. Chemical Phys., 50, 4501 CrossRefGoogle Scholar
Bohren, C. F., & Huffman, D. R. 1983, Absorption and Scattering of Light by Small Particles (New York: Wiley)Google Scholar
Chihara, H., Koike, C., Tsuchiyama, A., Tachibana, S., & Sakamoto, D. 2002, A&A, 391, 267 Google Scholar
Fabian, D., Jäger, C., Henning, T., et al. 2000, A&A, 364, 282 Google Scholar
Jones, O. C., Woods, P. M., Kemper, F., et al. 2017, MNRAS, 470, 3250 CrossRefGoogle Scholar
Justtanont, K., Olofsson, G., Dijkstra, C., & Meyer, A. W. 2006, A&A, 450, 1051 Google Scholar
Henning, T., Begemann, B., Mutschke, H., & Dorschner, J. 1995, A&AS, 112, 143 Google Scholar
Koike, C., Chihara, H., Tsuchiyama, A., et al. 2003, A&A, 399, 1101 Google Scholar
Kraemer, K. E., Sloan, G. C., Wood, P. R., et al. 2017, ApJ, 834, 185 CrossRefGoogle Scholar
Kwok, S., Volk, K., & Bidelman, W. P. 1997, ApJS, 112, 557 CrossRefGoogle Scholar
Kwon, Y.-J., & Suh, K.-W. 2014, JKAS, 47, 123 Google Scholar
Pégourié, B. 1988, A&A, 194, 335 Google Scholar
Suh, K.-W. 1999, MNRAS, 304, 389 CrossRefGoogle Scholar
Suh, K.-W. 2000, MNRAS, 315, 740 CrossRefGoogle Scholar
Suh, K.-W. 2004, ApJ, 615, 485 CrossRefGoogle Scholar
Suh, K.-W., & Kwon, Y.-J. 2013, ApJ, 762, 113 CrossRefGoogle Scholar
Suh, K.-W. 2015, ApJ, 808, 165 CrossRefGoogle Scholar
Suh, K.-W. 2016, JKAS, 49, 127 Google Scholar
Sylvester, R. J., Kemper, F., Barlow, M. J., et al. 1999, A&A, 352, 587 Google Scholar
Th, Posch ., Kerschbaum, F., Mutschke, H., et al. 2002, A&A, 393, L7 Google Scholar
Woolf, N. J., & Ney, E. P. 1969, ApJ. 155, 181 CrossRefGoogle Scholar