Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-24T07:50:06.306Z Has data issue: false hasContentIssue false

There are no proper topological hyperbolic homoclinic classes for area-preserving maps

Published online by Cambridge University Press:  12 November 2019

Mário Bessa
Affiliation:
Departamento de Matemática, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal (bessa@ubi.pt)
Maria Joana Torres
Affiliation:
CMAT and Departamento de Matemática e Aplicações, Universidade do Minho, Campus de Gualtar, 4700-057 Braga, Portugal (jtorres@math.uminho.pt)

Abstract

We begin by defining a homoclinic class for homeomorphisms. Then we prove that if a topological homoclinic class Λ associated with an area-preserving homeomorphism f on a surface M is topologically hyperbolic (i.e. has the shadowing and expansiveness properties), then Λ = M and f is an Anosov homeomorphism.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Akin, E., Hurley, M. and Kennedy, J., Dynamics of topologically generic homeomorphisms, Mem. Am. Math. Soc. 164 (2003), 783.Google Scholar
2.Aoki, N., Topological dynamics, in Topics in general topology (ed. Morita, K. and Nagata, J.-I.), Volume 41, Chapter 15, pp. 625–740 (North-Holland Mathematical Library, 1989).CrossRefGoogle Scholar
3.Hiraide, K., Expansive homeomorphisms of compact surfaces are pseudo-Anosov, Osaka J. Math. 27 (1990), 117162.Google Scholar
4.Lewowicz, J., Expansive homeomorphisms of surfaces, Bol. Soc. Bras. de Mat. 20 (1989), 113133.10.1007/BF02585472CrossRefGoogle Scholar
5.Newhouse, S., Hyperbolic limit sets, Trans. Amer. Math. Soc. 167 (1972), 125150.CrossRefGoogle Scholar
6.Newhouse, S., Topics in conservative dynamics, in Regular and chaotic motions in dynamic systems (ed. G. Velo and A. S. Wightman), NATO Advanced Study Institutes Series, Volume 118, pp. 103–184 (D. Reidel Publishing Company, Dordrecht-Holland, 1985).10.1007/978-1-4684-1221-5_4CrossRefGoogle Scholar
7.Palis, J. and de Melo, W., Geometric theory of dynamical systems. An introduction (Springer-Verlag, New York–Berlin, 1982).CrossRefGoogle Scholar
8.Palis, J. and Smale, S., Structural stability theorems, Proceedings of Symposia in Pure Mathematics, Volume 14 (American Mathematical Society, Providence, RI, 1970).CrossRefGoogle Scholar
9.Shub, M., Global stability of dynamical systems (Springer-Verlag, 1987).CrossRefGoogle Scholar
10.Smale, S., Diffeomorphisms with many periodic points, in Differential and combinatorial topology, a symposium in honor of Marston Morse, pp. 63–80 (Princeton University Press, Princeton, NJ, 1965).10.1515/9781400874842-006CrossRefGoogle Scholar
11.Smale, S., Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747817.CrossRefGoogle Scholar