Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-d2wc8 Total loading time: 0.205 Render date: 2021-10-18T15:19:15.542Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Deep-Penetration Calculations for Scattering Neutrons by Importance Sampling

Published online by Cambridge University Press:  27 July 2009

Craig Kollman
Affiliation:
Department of Statistics, Sequoia Hall, Stanford University, Stanford, California 94305

Abstract

Neutron scatter in a homogeneous solid is modelled as a one-dimensional i.i.d. random walk with killing. Importance sampling is used to estimate the extremely small probability that the random walk crosses a large level before killing occurs. The theory of large deviations provides insight into the selection of the probability measure used in the simulations. A sample problem demonstrates the variance reduction possible when this technique is used.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bucklew, J.A. (1990). Large deviation techniques in decision, simulation, and estimation. New York: Wiley Interscience.Google Scholar
2.Cramer, S.N., Gonnord, J., & Hendricks, J.S. (1986). Monte Carlo techniques for analyzing deep-penetration problems. Nuclear Science and Engineering 92: 280288.CrossRefGoogle Scholar
3.Glynn, P.W. & Iglehart, D.L. (1989). Importance sampling for stochastic simulations. Management Science 35: 13671392.CrossRefGoogle Scholar
4.Lehtonen, T. & Nyrhinen, H. (1992). Simulating level-crossing probabilities by importance sampling. Advances in Applied Probability 24: 858874.CrossRefGoogle Scholar
5.Murthy, K.P.N. & Indira, R. (1986). Analytical results of variance reduction characteristics of biased Monte Carlo for deep-penetration problems. Nuclear Science and Engineering 92: 482487.CrossRefGoogle Scholar
6.Ripley, B.D. (1987). Stochastic simulation. New York: John Wiley & Sons.CrossRefGoogle Scholar
7.Rockafellar, R.T. (1970). Convex analysis. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
8.Siegmund, D. (1976). Importance sampling in the Monte Carlo study of sequential tests. Annals of Statistics 4: 673684.CrossRefGoogle Scholar
9.Siegmund, D. (1985). Sequential analysis. New York: Springer-Verlag.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Deep-Penetration Calculations for Scattering Neutrons by Importance Sampling
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Deep-Penetration Calculations for Scattering Neutrons by Importance Sampling
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Deep-Penetration Calculations for Scattering Neutrons by Importance Sampling
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *