Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-01T00:49:40.906Z Has data issue: false hasContentIssue false

X-ray powder diffraction data for tetrazene nitrate monohydrate, C2H9N11O4

Published online by Cambridge University Press:  02 November 2021

J. Maixner*
Affiliation:
Central Laboratories, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
J. Ryšavý
Affiliation:
Faculty of Chemical Technology, Institute of Energetic Materials, University of Pardubice, Studentská 95, 532 10Pardubice, Czech Republic
*
a)Author to whom correspondence should be addressed. Electronic mail: jaroslav.maixner@vscht.cz

Abstract

X-ray powder diffraction data, unit-cell parameters, and space group for tetrazene nitrate monohydrate, C2H9N11O4, are reported [a = 5.205(1) Å, b = 13.932(3) Å, c = 14.196(4) Å, β = 97.826(3)°, unit-cell volume V = 1019.8(4) Å3, Z = 4, and space group P21/c]. All measured lines were indexed and are consistent with the P21/c space group. No detectable impurities were observed.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Багал, Л. И. (1975). Химия и технология инициирующих взрывчатых веществ (Машиностроение, Москва), pp. 377393.Google Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Conduit, C. P. (1955). The ultra-violet spectroscopic examination of tetrazene (AD-083780, Report no.22/R/55). Waltham Abbey, Essex: Explosives Research & Development Establishment.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Duke, J. R. C. (1971). “X-ray crystal and molecular structure of ‘tetrazene’ (‘tetracene’), C2H8N10O,” J. Chem. Soc. D(1), 23.Google Scholar
Gates-Rector, S. D. and Blanton, T. N. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powd. Diffr. 34(4), 352360.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. B72, 171179.Google Scholar
Hagel, R. and Redecker, K. (1986). “Sintox – a new, non-toxic primer composition by dynamit nobel AG,” Propellants, Explos., Pyrotech. 11, 184187.CrossRefGoogle Scholar
Hofmann, K. A. and Roth, R. (1910). “Aliphatische diazosalze,” Ber. Dtsch. Chem. Ges. 43, 682688.CrossRefGoogle Scholar
Matyáš, R. and Pachman, J. (2013). Primary Explosives (Springer, Heidelberg), pp. 189194.CrossRefGoogle Scholar
McNutt, J. D. (1933). “Priming mixture,” US Patent 1933/1930653 1-3.Google Scholar
Patinkin, S. H., Horwitz, J. P., and Lieber, E. (1955). “The structure of tetracene,” J. Am. Chem. Soc. 77, 562567.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction pattern and evaluating the reliability of powder indexing.,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Špičák, S. and Šimeček, J. (1957). Chemie a technologie třaskavin (Vojenská technická akademie Antonína Zápotockého, Brno), pp. 168183.Google Scholar
Straka, A. and Vachovec, F. (1944). “Stanovení guanylnitrosaminoguanyltetrazénu,” Chem. Obz. 19, 156157.Google Scholar
Thiele, J. (1892). “Ueber nitro- und amidoguanidin,” Justus Liebigs Ann. Chem. 270, 163.CrossRefGoogle Scholar