Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T06:27:26.246Z Has data issue: false hasContentIssue false

X-ray powder diffraction data for botallackite

Published online by Cambridge University Press:  01 March 2012

Werner Krause*
Affiliation:
Henriette-Lott-Weg 8, D-50354 Huerth, Germany
*
a)Electronic mail: we.krause@t-online.de

Abstract

Botallackite, Cu2(OH)3Cl, from the Botallack mining area in Cornwall, United Kingdom, has been reinvestigated regarding physical, optical, chemical, and X-ray powder diffraction data. It forms emerald-green tabular crystals slightly elongated along [010] with {001} (dominant), {100}, {010}, and {011}. Botallackite is biaxial positive, 2V=70(2)°, the optical orientation is Yc 22(2)° (in obtuse β), Z=b. Electron-microprobe analyses gave CuO 73.26, ZnO 0.22, Cl 16.80, H2O (calc) 12.37, total 102.65, less O=Cl 3.79, total 98.86 wt %, corresponding to the empirical formula Cu1.99Zn0.01(OH)2.97Cl1.03 (based on four anions). Unit cell parameters refined from X-ray powder diffraction data are a 5.7155(5), b 6.1255(6), c 5.6336(4) Å, β 93.090(8), V 196.95(2)Å3,Z=2.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J. W., Bideaux, R. A., Bladh, K. W., and Nichols, M. C. (1997). Halides, Hydroxides, Oxides, Handbook of Mineralogy Vol. III (Mineral Data, Tucson, AZ), p. 73.Google Scholar
Bancroft, P. and Weller, S. (1993). “Cornwall’s famous mines,” Mineral. Record 24, 259283.Google Scholar
Braithwaite, R. S. W., Mereiter, K., Paar, W. H., and Clark, A. M. (2004). “Herbertsmithite, Cu3Zn(OH)6Cl2, a new species, and the definition of paratacamite,” Miner. Mag. MNLMBB 68, 527539.CrossRefGoogle Scholar
Church, A. H. (1865). “Notes on a Cornish mineral of the atacamite group,” J. Chem. Soc. JCSOA9 18, 212214.CrossRefGoogle Scholar
Deyu, L., O’Connor, B. H., Roach, G. I. D., and Cornell, J. B. (1990). “Use of X-ray powder diffraction Rietveld pattern-fitting for characterising preferred orientation in gibbsite,” Powder Diffr. PODIE2 5, 7985.CrossRefGoogle Scholar
Frondel, C. (1950). “On paratacamite and some related copper chlorides,” Miner. Mag. MNLMBB 29, 3445.Google Scholar
Garvey, R. (1986.) “LSUCRIPC Least squares unit cell refinement with indexing on the personal computer,” Powder Diffr. PODIE2 1, 114.Google Scholar
Hannington, M. D. (1993). “The formation of atacamite during weathering of sulfides on the modern seafloor,” Can. Mineral. CAMIA6 31, 945956.Google Scholar
Hawthorne, F. C. (1985). “Refinement of the crystal structure of botallackite,” Miner. Mag. MNLMBB 49, 8789.CrossRefGoogle Scholar
Hochleitner, R. and Weiß, S. (2000). “Botallackit - Steckbrief,” Lapis 25(1), 911.Google Scholar
ICDD (1958). “Powder diffraction file,” International Centre for Diffraction Data, edited by McClune, F., 12 Campus Boulevard, Newtown Square, PA 19073-3272.Google Scholar
Jambor, J. L., Dutrizac, J. E., Roberts, A. C., Grice, J. D., and Szymański, J. T. (1996). “Clinoatacamite, a new polymorph of Cu2(OH)3Cl, and its relationship to paratacamite and ‘anarakite,’Can. Mineral. CAMIA6 34, 6172.Google Scholar
Kingsbury, A. W. G. (1952). “New occurrences of rare copper and other minerals in Devon and Cornwall,” Trans. R. Geological Soc. Cornwall 18, 386406.Google Scholar
Kingsbury, A. W. G. (1964). “Some minerals of special interest in south-west England,” in Hosking, K. F. G. and Shrimpton, G. J. (eds), Present Views of Some Aspects of the Geology of Cornwall and Devon (Royal Geological Society of Cornwall, Truro), pp. 247266.Google Scholar
Knight, J. (2002). “Botallackite - A locality correction,” Mineral. Record 33, 347348.Google Scholar
Oswald, H. R. and Feitknecht, W. (1964). “Über die Hydroxidhalogenide Me2(OH)3Cl, -Br, -J zweiwertiger Metalle (Me=Mg, Ni, Co, Cu, Fe, Mn),” Helv. Chim. Acta HCACAV 47, 272289.CrossRefGoogle Scholar
Palache, C., Berman, H., and Frondel, C. (1951). DANA’s System of Mineralogy, 7th ed. (John Wiley and Sons, New York), pp. 7677.Google Scholar
Pollard, A. M., Thomas, R. G., and Williams, P. A. (1989). “Synthesis and stabilities of the basic copper(II)chlorides atacamite, paratacamite and botallackite,” Miner. Mag. MNLMBB 53, 557563.CrossRefGoogle Scholar
Schnorrer-Köhler, G. (1982). “Connellit, Botallackit, Paratacamit und Lead-hillit in den antiken Bleischlacken Laurions,” Aufschluss 33, 36.Google Scholar
Schnorrer-Köhler, G. (1987). “Die Minerale in den Schlacken des Harzes,” Aufschluss 38, 181-197.Google Scholar
Siemroth, J. and Witzke, T. (1999). “Die Minerale des Mansfelder Kupferschiefers,” Schriftenreihe des Mansfeld-Museums (Neue Folge) 4, 167.Google Scholar
Weiß, S. (1986). “Die Grubenbezirke St. Just und St. Ives in Cornwall,” Lapis 11(5), 932.Google Scholar
Wendel, W., Blaß, G., Mühlbauer, W., and Markl, G. (1999). “Hilarion - Plaka - Sounion: Laurion News 1997-1999,” Lapis 24(7), 6467.Google Scholar
Yvon, K., Jeitschko, W., and Parthé, E. (1977). “LAZY PULVERIX, a computer program, for calculating X-ray and neutron powder patterns,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889877012898 10, 7374.CrossRefGoogle Scholar