Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-21T05:38:12.788Z Has data issue: false hasContentIssue false

Synthesis and structural characterization of ASnFe(PO4)3 (A=Na2,Ca,Cd) phosphates with the Nasicon type structure

Published online by Cambridge University Press:  06 March 2012

Abderrahim Aatiq*
Affiliation:
Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M’Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
*
a)Electronic mail: a_aatiq@yahoo.fr

Abstract

The crystal structures of ASnFe(PO4)3 (A=Na2, Ca, Cd) phases, obtained by conventional solid state reaction techniques at (950–1000 °C), were determined at room temperature from X-ray powder diffraction (XRD) using Rietveld analysis. The three materials exhibit the Nasicon-type structure (R3c space group, Z=6) with a random distribution of Sn(Fe) within the framework. Hexagonal cell parameters when A=Na2, Ca and Cd are: a=8.628(1) Å, c=22.151(2) Å; a=8.569(1) Å, c=22.037(2) Å and a=8.587(1) Å, c=21.653(2) Å, respectively. Structural refinements show a partial occupancy of M1 (Na(1)) and M2 (Na(2)) sites in Na2SnFe(PO4)3 leading to the cationic distribution [Na1.221.78]M2[Na0.780.22]M1SnFe(PO4)3. Ca2+ ions are distributed only in the M1 site of [□3]M2[Ca]M1SnFe(PO4)3. From XRD data, it is difficult to unambiguously distinguish between Cd2+ and Sn4+ ions in CdSnFe(PO4)3. Nevertheless the overall set of cation–anion distances within the Nasicon framework clearly shows that the cationic distribution can be illustrated by the [□3]M2[Cd]M1SnFe(PO4)3 crystallographic formula. Distortion within the [Sn(Fe)(PO4)3] frameworks, in ASnFe(PO4)3 (A=Na2,Ca,Cd) phases, is shown to be related to the M1 site size. © 2004 International Centre for Diffraction Data.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A., Delmas, C., El Jazouli, A., and Gravereau, P. (1998). “Structure and electrochemical study of Li2xMn(1−x)TiCr(PO4)3 (x=0–0.5) with Nasicon-like structure,” Ann. Chim. Sci. Mat., ZZZZZZ 23, 121124.CrossRefGoogle Scholar
Aatiq, A. and Dhoum, H. (2003). “Structure of AFeTi(PO4)3 (A=Ca,Cd) Nasicon phases from powder X-ray data,” Powder Diffr., (in press).Google Scholar
Aatiq, A., Ménétrier, M., Croguennec, L., Suard, E., and Delmas, C. (2002a). “On the structure of Li3Ti2(PO4)3,J. Mater. Chem. JMACEP 12, 29712978. jtc, JMACEP CrossRefGoogle Scholar
Aatiq, A., Ménétrier, M., El Jazouli, A., and Delmas, C. (2002b). “Structural and lithium intercalation studies of Mn(0.5−x)CaxTi2(PO4)3 phases (0≤x≤0.50),Solid State Ionics SSIOD3 150, 391405. ssi, SSIOD3 CrossRefGoogle Scholar
Brown, I. D.and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 41, 244247. acl, ASBSDK CrossRefGoogle Scholar
Delmas, C., Nadiri, A., and Soubeyroux, J. L. (1988). “The Nasicon-type titanium phosphates ATi2(PO4)3 (A=Li,Na) as electrode materials,” Solid State Ionics SSIOD3 28–30, 419423. ssi, SSIOD3 CrossRefGoogle Scholar
Delmas, C., Viala, J. C., Olazcuaga, R., Le Flem, G., Hagenmuller, P., Cherkaoui, F., and Brochu, R. (1981). “Ionic conductivity in Nasicon-type phases Na1+xZr2−xLx(PO4)3 (L=Cr,In,Yb),Solid State Ionics SSIOD3 3/4, 209214. ssi, SSIOD3 CrossRefGoogle Scholar
Hagman, L.and Kierkegaard, P. (1968). “The crystal structure of NaMe2IV(PO4)3; Me=Ge, Ti, Zr,” Acta Chem. Scand. ACSAA4 22, 18221932. 9em, ACSAA40001-5393CrossRefGoogle Scholar
Hong, H. Y-P. (1976). “Crystal structures and crystal chemistry in the system Na(1+x)Zr2SixP(3−x)O12,Mater. Res. Bull. MRBUAC 11, 173182. mrb, MRBUAC CrossRefGoogle Scholar
Isasi, J.and Daidouh, A. (2000). “Synthesis, structure and conductivity study of monovalent phosphates with the langbeinite structure,” Solid State Ionics SSIOD3 133, 303313. ssi, SSIOD3 CrossRefGoogle Scholar
Kasthuri Rangan, K.and Gopalakrishnan, J. (1994). “New titanium-vanadium phosphates of Nasicon and Langbeinite structures, and differences between the two structures toward deintercalation of alkali metal,” J. Solid State Chem. JSSCBI 109, 116121. jss, JSSCBI CrossRefGoogle Scholar
Krimi, S., Mansouri, I., El Jazouli, A., Chaminade, J. P., Gravereau, P., and Le Flem, G. (1993). “The structure of Na5Ti(PO4)3,J. Solid State Chem. JSSCBI 105, 561566. jss, JSSCBI CrossRefGoogle Scholar
Masquelier, C., Wurn, C., Rodriguez-Carvajal, J., Gaubicher, J., and Nazar, L. F. (2000). “A powder neutron diffraction investigation of the two rhombohedral Nasicon analogues: γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3,Chem. Mater. CMATEX 12, 525532. cma, CMATEX CrossRefGoogle Scholar
Morin, E., Angenault, J., Couturier, J. C., Quarton, M., He, H., and Klinowski, J. (1997). “Phase transition and crystal structures of LiSn2(PO4)3,Eur. J. Inorg. Chem. EJICFO 34, 947958. 8qi, EJICFO Google Scholar
Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., and Goodenough, J.B. (1997). “Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation,” J. Electrochem. Soc. JESOAN 144, 25812586. jes, JESOAN CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld refinement,” Laboratoire Léon Brillouin (CEA-CNRS) Saclay, France.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystal- logr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN A32, 751767. aca, ACACBN CrossRefGoogle Scholar
Woodcock, D. A., Lightfoot, P., and Smith, R. I. (1999). “Powder neutron studies of three low thermal expansion in the NZP family: K0.5Nb0.5Ti1.5(PO4)3, BaTi2(PO4)3 and Ca0.25Sr0.25Zr2(PO4)3,J. Mater. Chem. JMACEP 9, 26312636. jtc, JMACEP CrossRefGoogle Scholar
Yin, S. C., Grondey, H., Strobel, P., Anne, M., and Nazar, L. F. (2003). “Electrochemical property: Structure relationships in monoclinic Li3−yV2(PO4)3,J. Am. Chem. Soc. JACSAT 125, 1040210411. acs, JACSAT CrossRefGoogle ScholarPubMed