Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-11T04:12:47.869Z Has data issue: false hasContentIssue false

Synchrotron XRF analyses of element distribution in fossilized sauropod dinosaur bones

Published online by Cambridge University Press:  29 February 2012

M. Dumont
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
N. Zoeger
Affiliation:
Atomic Institute of the Austrian Universities, Stadionallee 2, A-1020 Wien, Austria
C. Streli
Affiliation:
Atomic Institute of the Austrian Universities, Stadionallee 2, A-1020 Wien, Austria
P. Wobrauschek
Affiliation:
Atomic Institute of the Austrian Universities, Stadionallee 2, A-1020 Wien, Austria
G. Falkenberg
Affiliation:
Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutschen Elektronen-Synchrotron, DESY, Notkestrasse 85, D-22603 Hamburg, Germany
P. M. Sander
Affiliation:
Institute of Palaeontology, University of Bonn, Nussallee, D-53115 Bonn, Germany
A. R. Pyzalla
Affiliation:
Helmholtz-Zentrum Berlin, Glienicker Strasse 100, 14109 Berlin, Germany

Abstract

Sauropod dinosaurs were typically one magnitude larger than any other living or extinct terrestrial animal. This sheer size of the sauropod leads to scale effects in their biology and physiology that still are inadequately understood. The only remnants of the sauropods are their fossilized bones. These fossilized bones have sustained burial for some hundred million years and thus may have experienced significant diagenetic changes. These diagenetic changes often do not affect bone preservation on the histological level, but may lead to significant alterations of the bone microstructure. Here the influence of diagenesis on the microstructure of fossilized sauropod bones using femur cross section of Brachiosaurus brancai that was excavated in the Tendaguru beds in Tanzania is investigated. The element distribution in this dinosaur bone is studied by a combination of micro-X-ray-fluorescence (μ-XRF) using synchrotron radiation and energy dispersive X-ray analyses (EDX) in the scanning electron microscope. These techniques reveal quantitative values of the element concentration at a macroscopic level combined with qualitative information at high spatial resolution of the distribution of Ca, Co, Cr, V, Pb, U, Sr, Y, and As in the fossil bones. This allows a differentiation between the remnants of the original bone apatite and pore filling minerals and also a visualization of damage, e.g., cracks introduced by diagenetic processes.

Type
X-Ray Fluorescence
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behrensemeyer, A. K. (1978). “Taphonomic and ecologic information from bone weathering,” PaleobiologyPALBBM 4, 150162.CrossRefGoogle Scholar
Bell, L. S. (1990). “Palaeopathology and diagenesis: An SEM evaluation of structural changes using backscattered electron imaging,” J. Archaeol. Sci.JASCDU0305-4403 17, 85102.10.1016/0305-4403(90)90016-XCrossRefGoogle Scholar
Boscher-Barre, N., Trocellier, P., Deschamps, N., Dardenne, C., Blondiaux, J., and Buchet, L. (1992). “Nuclear micropore study of trace element in archeological bones,” J. Trace Microprobe Tech.JTMTDE 10, 7790.Google Scholar
Carvalho, M. L., Marques, A. F., Lima, M. T., and Reus, U. (2004). “Trace elements distribution and post-mortem intake in human bones from Middle Age by total reflection X-ray fluorescence,” Spectrochim. Acta, B At. Spectrosc. 59, 12511257.10.1016/j.sab.2004.01.019CrossRefGoogle Scholar
Elliott, T. A. and Grime, G. W. (1993). “Examining the diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy,” Nucl. Instrum. Methods Phys. Res. BNIMBEU 77, 537547.10.1016/0168-583X(93)95592-SCrossRefGoogle Scholar
Ezzo, J. A. (1994). “Putting the chemistry back into archaeological bone chemistry analysis: Modeling potential paleodietary indicators,” J. Anthropol. Archaeol. 13, 134.10.1006/jaar.1994.1002CrossRefGoogle Scholar
Ferreyro, R., Zoeger, N., Cernohlawek, N., Jokubonis, C., Koch, A., Streli, C., Wobrauschek, P., Sander, P. M., and Pyzalla, A. (2006). “Determination of the element distribution in sauropod long bones by micro-XRF,” Adv. X-Ray Anal.AXRAAA 49, 230235.Google Scholar
Heinrich, W. -D. (1999). “The taphonomy of dinosaurs from the Upper Jurassic of Tendaguru, Tanzania (East Africa), based on field sketches of the German Tendaguru expedition (1909–1913),” Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe 2, 2561.CrossRefGoogle Scholar
Hubert, J. F., Parish, P. T., Chure, D. J., and Prostak, K. S. (1996). “Chemistry, microstructure, petrology, and diagenetic model of Jurassic dinosaur bones, Dinosaur National Monument, Utah,” J. Sediment. Res. 66, 531547.Google Scholar
Janensch, W. (1914). “Übersicht über die Wirbeltierfauna der Tendaguruschichten, nebst einer kurzen Charakterisierung der neu aufgeführten Arten von Sauropoden,” Archiv für Biontologie 3, 81110.Google Scholar
Janensch, W. (1950). “Die Skelettrekonstruktion von Brachiosaurus brancai,” Palaeontographica 7, 97103.Google Scholar
Janensch, W. (1961). “Die gliedmaszen und gliedmaszengürtel der sauropoden der Tendaguru-Schichten,” Palaeontographica 7, 177235.Google Scholar
Janssens, K., Proost, K., and Falkenberg, G. (2004). “Confocal microscopic X-ray fluorescence at the HASYLAB microfocus beamline: Characteristics and possibilities,” Spectrochim. Acta, Part BSAASBH 59, 16371645.10.1016/j.sab.2004.07.025CrossRefGoogle Scholar
Karkanas, P., Bar-Yosef, O., Goldberg, P., and Weiner, S. (2000). “Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record,” J. Archaeol. Sci.JASCDU 27, 915929.10.1006/jasc.1999.0506Google Scholar
Kolodny, Y., Luz, B., Sander, M., and Clemens, W. A. (1996). “Dinosaur bones: fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 161171.10.1016/S0031-0182(96)00112-5CrossRefGoogle Scholar
Lambert, J. B., Vlasak Simpson, S., Szpunar, C. B., and Buikstra, J. E. (1985). “Bone diagenesis and dietary analysis,” J. Hum. Evol.ZZZZZZ 14, 477482.10.1016/S0047-2484(85)80026-9Google Scholar
Millard, A. R. and Hedges, R. E. M. (1995). “The role of the environment in uranium uptake by buried bone,” J. Archaeol. Sci.JASCDU 22, 239250.10.1006/jasc.1995.0025CrossRefGoogle Scholar
Parker, R. B. and Toots, H. (1980). Fossils in the Making: Vertebrate Taphonomy and Paleoecology, edited by Behrensmeyer, A. K. and Hill, A. P. (University of Chicago, Chicago), pp. 197207.Google Scholar
Pfretzschner, H. -U. (2000). “Microcracks and fossilization of Haversian bone,” Neues Jahrb. Mineral., Abh.NJMIAK 216, 413432.Google Scholar
Reeder, R. J. and Grams, J. C. (1987). “Sector zoning in calcite cement crystals: Implications for trace element distributions in carbonates,” Geochim. Cosmochim. ActaGCACAK 51, 187194.10.1016/0016-7037(87)90230-4CrossRefGoogle Scholar
Reiche, I., Favre-Quattropani, L., Vignaud, C., Bocherens, H., Charlet, L., and Menu, M. (2003). “A multi-analytical study of bone diagenesis: the Neolithic site of Bercy (Paris, France),” Meas. Sci. Technol.MSTCEP 14, 16081619.10.1088/0957-0233/14/9/312Google Scholar
Rheingold, A. L., Hues, S., and Cohen, M. N. (1983). “Strontium and zinc content in bones as an indication of diet,” J. Chem. Educ.JCEDA8 60, 233234.Google Scholar
Romer, R. L. (2001). “Isotopically heterogeneous initial Pb and continuous 222Rn loss in fossils: The U-Pb systematics of Brachiosaurus brancai,” Geochim. Cosmochim. ActaGCACAK 65, 42014213.10.1016/S0016-7037(01)00716-5Google Scholar
Safont, S., Malgosa, A., Subira, M. E., and Gibert, J. (1998). “Can trace elements in fossils provide information about palaeodiet?Int. J. Osteoarchaeol.IJOHEA 8, 2337.10.1002/(SICI)1099-1212(199801/02)8:1<23::AID-OA403>3.0.CO;2-RGoogle Scholar
Samoilov, V. and Benjamini, Ch. (1996). “Geochemical features of dinosaur remains from the Gobi Desert, South Mongolia,” Palaios 11, 519531.10.2307/3515188CrossRefGoogle Scholar
Sander, P. M. (2000). “Longbone histology of the Tendaguru sauropods: Implications for growth and biology,” PaleobiologyPALBBM 26, 466488.10.1666/0094-8373(2000)026<0466:LHOTTS>2.0.CO;2Google Scholar
Tükten, T., Pfretzschner, H. -U., Vennemann, T. W., Sun, G., and Wang, Y. D. (2004). “Paleobiology and skeletochronology of Jurassic dinosaurs: Implications from the histology and oxygen isotope compositions of bones,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 206, 217238.10.1016/j.palaeo.2004.01.005Google Scholar
Vekemans, B., Janssens, K., Vincze, L., Adams, F., and Van Espen, P. (1994). “Analysis of X-ray spectra by iterative least squares (AXIL): New developments,” XRay Spectrom. 23, 278285.10.1002/xrs.1300230609CrossRefGoogle Scholar