Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T04:28:25.476Z Has data issue: false hasContentIssue false

A Rietveld refinement investigation of a Mg-stabilized triclinic tricalcium silicate using synchrotron X-ray powder diffraction data

Published online by Cambridge University Press:  05 March 2012

Vanessa Kate Peterson*
Affiliation:
University of Technology, Sydney, Australia
*
a)Electronic mail: vanessa.peterson@nist.gov

Abstract

A Mg-stabilized triclinic tricalcium silicate form of type Ca3−xMgxSiO5, T3, was synthesized. Rietveld analysis using synchrotron X-ray powder diffraction data suggested that unlike the T1 form, the T3 structure was unmodulated. This refinement illustrated that the only existing model for a triclinic form of tricalcium silicate (T1) can be used to describe the nonmodulated T3 form.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bigaré, M., Guinier, A., Mazières, C., Regourd, M., Yannaquis, N., Eysel, W., Hahn, T., and Woermann, E. (1967). “Polymorphism of tricalcium silicate and its solid solutions.”Google Scholar
Dowty, E. (1999). ATOMS for Windows V5.06.Google Scholar
Golovastikov, N. I., Matveera, R. G., and Belov, N. V. (1975). “Crystal structure of the tricalcium silicate 3CaO.SiO2=C3S,” Sov. Phys. Crystallogr. SPHCA6 20, 721729.Google Scholar
Howard, C. J. (1982). “The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians,” J. Appl. Crystallogr. JACGAR 15, 615620.Google Scholar
Hunter, B. (1998). “Rietica—A visual Rietveld program,” Int. Union Crystallogr. Com. on Powder Diffraction Newslett. 20.Google Scholar
Jeffrey, J. W. (1952). The crystal structure of tricalcium silicate,” Acta Crystallogr. ACCRA9 5, 2635.CrossRefGoogle Scholar
Maki, I. and Chromý, S. (1978). “Microscopic study on the polymorphism of Ca3SiO5,” Cem. Concr. Res. CCNRAI 8, 407414.CrossRefGoogle Scholar
Peterson, V. K. (2003). Ph.D. thesis, “Powder diffraction investigations of cement and its major component, tricalcium silicate, University of Technology, Sydney, Australia.Google Scholar
Peterson, V. K., Hunter, B., and Ray, A. (2004). “Tricalcium silicate T1 and T2 polymorphic investigations: Rietveld refinement at various temperatures using synchrotron powder diffraction,” J. Am. Ceram. Soc. JACTAW 87(9), 16251634.Google Scholar
Taylor, H. F. W. (1997). Cement Chemistry, Telford, London.Google Scholar
Thompson, P., Cox, D. E., and Hasting, J. B. (1994). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. JACGAR 27, 7983.Google Scholar
Urabe, K., Nakano, H., and Morita, H. (2002). “Structural modulations in monoclinic tricalcium silicate solid solutions doped with zinc oxide, M1, M11 and M111,” J. Am. Ceram. Soc. JACTAW 85, 423429.Google Scholar
Urabe, K., Shirakami, T., and Iwashima, M. (2000). “Superstructure in a triclinic phase of tricalcium silicate,” J. Am. Ceram. Soc. JACTAW 83, 12531258.Google Scholar
Urabe, K., and Yamamoto, Y. (1996). “Electron diffraction study of superstructure on C3S (T1 phase),” J.C.A. Proc. Cem. Concr. 50, 1419.Google Scholar
Woermann, E., Hahn, T., and Eysel, W. (1968). “Chemical and structural investigations of solid solutions of tricalcium silicate,” Zem. Kalk Gips B ZKGIFW 21, 241251.Google Scholar