Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-05T00:00:03.796Z Has data issue: false hasContentIssue false

Rare Earth Distribution in NaRF4: Effect on Up-Conversion Intensity

Published online by Cambridge University Press:  14 November 2013

H.F. Brito
Affiliation:
Universidade de São Paulo, Instituto de Química, São Paulo-SP, Brazil
J. Hölsä
Affiliation:
Universidade de São Paulo, Instituto de Química, São Paulo-SP, Brazil University of Turku, Department of Chemistry, FI-20014 Turku, Finland Turku University Centre for Materials and Surfaces (MatSurf), Turku, Finland
T. Laamanen
Affiliation:
University of Turku, Department of Chemistry, FI-20014 Turku, Finland Turku University Centre for Materials and Surfaces (MatSurf), Turku, Finland
T. Laihinen
Affiliation:
University of Turku, Department of Chemistry, FI-20014 Turku, Finland
M. Lastusaari*
Affiliation:
University of Turku, Department of Chemistry, FI-20014 Turku, Finland Turku University Centre for Materials and Surfaces (MatSurf), Turku, Finland
L.C.V. Rodrigues
Affiliation:
Universidade de São Paulo, Instituto de Química, São Paulo-SP, Brazil University of Turku, Department of Chemistry, FI-20014 Turku, Finland
L. Pihlgren
Affiliation:
University of Turku, Department of Chemistry, FI-20014 Turku, Finland Graduate School of Materials Research (GSMR), Turku, Finland
T. Soukka
Affiliation:
University of Turku, Department of Biochemistry, FI-20014 Turku, Finland
*
*Corresponding author, e-mail: miklas@utu.fi

Abstract

The NaYF4:Yb3+,Tb3+ (xYb: 0.20, xTb: 0.04) materials were prepared by the co-precipitation method. The as-prepared material was washed with and without water and thereafter annealed at 500 °C. This resulted in materials with moderate (with water) and very high (without water) up-conversion luminescence intensity. The structural details causing the differences in luminescence intensity were investigated at room temperature with X-ray powder diffraction and Rietveld analyses. All materials crystallized in the hexagonal form (P63/m, No. 176, Z: 1.5) with a composition very close to stoichimetric. The local structural details revealed microstrains in the rare earth sublattice that were relaxed for the material with very high up-conversion luminescence intensity thus decreasing energy losses and enhancing up-conversion.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antal, T., Harju, E., Pihlgren, L., Lastusaari, M., Tyystjärvi, T., Hölsä, J. and Tyystjärvi, E. (2012). “Use of near-infrared radiation for oxygenic photosynthesis via photon up-conversion,” Int. J. Hydrogen Energy 37, 88598863.CrossRefGoogle Scholar
Auzel, F. (2004). “Upconversion and anti-Stokes process with f and d ions in solids,” Chem. Rev. 104, 139173.CrossRefGoogle Scholar
Bergues, J. and Chayé d'Albissin, M. (1990). “Thermoluminescence as a scalar measure of plastic strain in experimentally and naturally deformed crystalline limestones,” Tectonophysics 172, 223234.Google Scholar
Brito, H. F., Hölsä, J., Laamanen, T., Laihinen, T., Lastusaari, M., Nunes, L. A. O. and Pihlgren, L. (2012). “Role of Er3+ impurity in the Yb3+-Tb3+ up-conversion luminescence in NaYF4,” Proc. 8th Int. Conf. f-Elements (ICfE 2012), Udine, Italy, August 26-31, 2012, SST 11P.Google Scholar
Harju, E., Hyppänen, I., Hölsä, J., Kankare, J., Lahtinen, M., Lastusaari, M., Pihlgren, L. and Soukka, T. (2011). “Polymorphism of NaYF4:Yb3+,Er3+ up-conversion luminescence materials,” Z. Kristallogr. Proc. 1, 381387.Google Scholar
Hyppänen, I., Hölsä, J., Kankare, J., Lastusaari, M., Pihlgren, L. and Soukka, T. (2010). “Preparation and up-conversion luminescence properties of NaYF4:Yb3+,Er3+ nanomaterials,” Terrae Rarae 2009, 16-1-6.Google Scholar
Hölsä, J., Laihinen, T., Laamanen, T., Lastusaari, M., Nunes, L. A. O., Pihlgren, L. and Soukka, T. (2012). “Serendipitous enhancement of up-conversion luminescence from NaYF4:Yb3+,Tb3+ ,” Proc. 3rd Int. Conf. Phys. Opt. Mater. Devices (ICOM 2012), Belgrade, Serbia, September 3-6, 2012, P2.123.Google Scholar
Kuningas, K., Rantanen, T., Ukonaho, T., Lövgren, T. and Soukka, T. (2005). “Homogeneous assay technology based on upconverting phosphors,” Anal. Chem. 77, 73487355.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Rodriguez-Carvajal, J. (2007). FullProf.2k, Version 4.00 May 2007 (Computer Software), Laboratoire Leon Brillouin (CEA-CNRS), Gif-sur-Yvette, France, unpublished.Google Scholar
Shalav, A., Richards, B. S., Trupke, T., Krämer, K. W., and Güdel, H. U. (2005). “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett. 86, 013505.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. 32, 751767.CrossRefGoogle Scholar
Ungár, T. (2000). “Warren-Averbach applications,” in Industrial applications of X-ray diffraction, edited by Chung, F. H. and Smith, D. K. (Marcel Dekker, New York NY, USA), pp. 847852.Google Scholar
Williamson, G. K. and Hall, W. H. (1953). “X-ray line broadening from filed aluminium and wolfram,” Acta Metall. 1, 2231.CrossRefGoogle Scholar