Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-20T00:50:55.480Z Has data issue: false hasContentIssue false

Investigation on solid solubility and magnetism of the non-stoichiometric compound Fe3Se4

Published online by Cambridge University Press:  07 October 2013

S. Li
Affiliation:
Department of Chemistry, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
S.F. Jin
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
J. Ji
Affiliation:
Department of Chemistry, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
Z.N. Guo
Affiliation:
Department of Chemistry, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
W.X. Yuan*
Affiliation:
Department of Chemistry, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
*
a)Author to whom correspondence should be addressed. Electronic mail: wenxiayuan20@yahoo.cn

Abstract

In order to complete the research on the Fe–Se binary system, the phase structures with selenium contents from 50 to 60 at.% have been studied. Fe–Se binary samples used in this study were prepared by the high-temperature solid-state reaction method, and the phase structure of each sample was determined by powder X-ray diffraction. The solid solubility of the Fe3Se4 phase was determined to be from 56.1 to 57.6 at.% Se based on the values of unit-cell parameters. Magnetic properties of the samples were also studied.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dutrizac, J. E., Janjua, M. B. I., and Tognri, J. M. (1968). “Phase studies on the iron–selenium system,” Can. J. Chem. 46, 11711174.CrossRefGoogle Scholar
Grain, C. F. (1967). “Phase relations in the ZrO2–MgO system,” J. Am. Ceram. Soc. 50, 288290.CrossRefGoogle Scholar
Guo, J. G., Jin, S. F., Wang, G., Wang, S. C., Zhu, K. X., Zhou, T. T., He, M., and Chen, X. L. (2010). “Superconductivity in the iron selenide KxFe2Se2(0 ≤ x ≤ 1.0),” Phys. Rev. B. 82, 180520.CrossRefGoogle Scholar
Hirone, T. and Chiba, T. (1956). “The magnetic properties of FeSex with the NiAs structure,” J. Phys. Soc. Japan 11, 666670.CrossRefGoogle Scholar
Hirone, T., Maeda, S., and Tsuya, N. (1954). “On the ferrimagnetism of iron selenides,” J. Phys. Soc. Japan 9, 496499.CrossRefGoogle Scholar
Hsu, F. C., Luo, J. Y., Yeh, K. W., Chen, T. K., Huang, T. W., Phillip, Wu, M., Lee, Y. C., Huang, Y. L., Chu, Y. Y., Yan, D. C., and Wu, M. K. (2008). “Superconductivity in the PbO-type structure α-FeSe,” Proc. Natl. Acad. Sci. U.S.A. 105, 1426214264.CrossRefGoogle ScholarPubMed
Jung, S. G., Lee, N. H., Choi, E. M., Kang, W. N., Lee, S., Hwang, T., and Kin, D. H. (2010) “Fabrication of FeSe1−x superconducting films with bulk properties,” Physica C 470, 19771980.CrossRefGoogle Scholar
Katayama, S., Uoda, Y., and Kosuge, K. (1990). “Phase diagram and order–disorder transition of vacancies in the Cr–Se and Fe–Se systems,” Mater. Res. Bull. 25, 913922.CrossRefGoogle Scholar
Margadonna, S., Takabayashi, Y., Ohishi, Y., Mizuguchi, Y., Takano, Y., Kagayama, T., Nakagawa, T., Takata, M., and Prassides, K. (2009). “Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (T c = 37 K),” Phys. Rev. B 80, 064506.CrossRefGoogle Scholar
Okamoto, H. (1991). “The Fe–Se (iron–selenium) system,” J. Phase Equilib. 12, 383389.CrossRefGoogle Scholar
Oyler, K. D., Ke, X., Sines, I. T., Schiffer, P., and Schaak, R. E. (2009). “Chemical synthesis of two-dimensional iron chalcogenide nanosheets: FeSe, FeTe, Fe(Se, Te), and FeTe2,” Chem. Mater. 21, 36553661.CrossRefGoogle Scholar
Patel, U., Hua, J., Yu, S. H., Avci, S., Xiao, Z. L., Claus, H., Schlueter, J., Vlasko-Vlasov, V. V., Welp, U. and Kwok, W. K. (2009). “Growth and superconductivity of FeSex crystals,” Appl. Phys. Lett. 94, 082508.CrossRefGoogle Scholar
Pomjakushina, E., Conder, K., Pomjakushin, V., Bendele, M., and Khasanov, R. (2009). “Synthesis crystal structure, and chemical stability of the superconductor FeSe1−x,” Phys. Rev. B. 80, 024517.CrossRefGoogle Scholar
Schuster, W., Mikler, H., and Komarek, K. L. (1979). “Transition metal–chalcogen systems, VII: the iron–selenium phase diagram,” Monatsh. Chem. 110, 11531170.CrossRefGoogle Scholar
Sun, L. L., Chen, X. J., Guo, J., Gao, P. W., Huang, Q. Z., Wang, H. D., Fang, M. H., Chen, X. L., Chen, G. F., Wu, Q., Zhang, C., Gu, D. C., Dong, X. l., Wang, L., Yang, K., Li, A. G., Dai, X., Mao, H. K., and Zhao, Z. X. (2012). “Re-emerging superconductivity at 48 Kelvin in iron chalcogenides,” Nat. Phys. 483, 6769.CrossRefGoogle ScholarPubMed
Svendsen, S. R. (1972). “Decomposition pressures and standard enthalpy of formation of iron selenides FeSe, Fe7Se8, Fe3Se4, and FeSe2,” Acta Chem. Scand. 26, 37573774.CrossRefGoogle Scholar
Terzieff, P., and Komamk, K. L. (1978). “The paramagnetic properties of iron selenides with NiAs-type structure,” Monatsh. Chem. 109, 651659.CrossRefGoogle Scholar
Williams, A. J., McQueen, T. M., and Cava, R. J. (2009). “The stoichiometry of FeSe,” Solid State Commun. 149, 15071509.CrossRefGoogle Scholar