Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-21T00:29:25.045Z Has data issue: false hasContentIssue false

Improved structural model of Pb-doped γ-Bi2O3: (Bi23.68Pb0.32)(Bi1.28Pb0.72)O38.48

Published online by Cambridge University Press:  03 April 2012

Aleksandra Dapčević*
Affiliation:
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
Dejan Poleti
Affiliation:
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
Ljiljana Karanović
Affiliation:
Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia
*
a)Author to whom correspondence should be addressed. Electronic mail: hadzi-tonic@tmf.bg.ac.rs

Abstract

A polycrystalline single-phase sample with nominal composition Bi24PbO37 was synthesized from Bi2O3 and PbO by a high-temperature solid state reaction at 690 °C for 1.5 h. The compound adopts Bi12SiO20-type structure [cubic, space group I23 (No. 197); a = 10.24957(3) Å] and was refined to Rp = 7.96%, Rwp = 10.4%, Rexp = 8.43%, RB = 3.06%, and S = 1.23. The distributions of Pb2+ and Bi3+ over cationic sites based on the X-ray powder diffraction data were determined using a combination of the Rietveld refinement and bond valence calculations. The results showed that the asymmetric unit contains two mixed cation sites: the fully occupied 24f site and the partly occupied 8c site, with the unit-cell content (Bi23.68Pb0.32)(Bi1.28Pb0.72)O38.48. The structural constraints favor a preference of Pb2+ ion for the 8c site, i.e. only 1.3% of Bi3+ is substituted by Pb2+ at the 24f site and 36% at the 8c site. At the 24f site, the cations are surrounded by 5 + 2 or in a very small amount by 5 + 1 + 2 oxide ions, forming a base bicapped square pyramid or a bicapped highly deformed octahedron, respectively. At the 8c site, the cations with three oxide ions form a trigonal pyramid with the cations at the apex.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borowiec, M. T., Kozankiewicz, B., Szymczak, H., Zmija, J., Majchrowski, A., Zaleski, M., and Zayarnyuk, T. (1999). “Photoconductivity of Bi12Ti1−xPbxO20 single crystal,” Acta Phys. Pol. A 96, 785792.CrossRefGoogle Scholar
Brese, N. E. and O'Keeffe, M. (1991). “Bond valence parameters for solids,” J. Am. Chem. Soc. 113, 32263229.Google Scholar
Brown, I. D. (2009). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model (Oxford University Press, Oxford) p. 2640.Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond–valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr. Sect. B: Struct. Sci. 41, 244247.CrossRefGoogle Scholar
Cornei, N., Tancret, N., Abraham, F., and Mentre, O. (2006). “New ɛ-Bi2O3 metastable polymorph,” Inorg. Chem. 45, 48864888.CrossRefGoogle ScholarPubMed
Craig, D. C. and Stephenson, N. C. (1975). “Structural studies of some body centered cubic phases of mixed oxides involving Bi2O3: the structures of Bi25FeO40 and Bi38ZnO60,” J. Solid State Chem. 15, 18.CrossRefGoogle Scholar
Darriet, J., Launaya, J. C., and Zuniga, F. J. (2005). “Crystal structures of the ionic conductors Bi46M 8O89 (M = P, V) related to the fluorite-type structure,” J. Solid State Chem. 178, 17531764.CrossRefGoogle Scholar
Fee, M. G. and Long, N. J. (1996). “Mixed conductivity in metal-doped bismuth-lead oxide,” Solid State Ionics 86–88, 733737.CrossRefGoogle Scholar
Fee, M. G., Sammes, N. M., Tomsett, G., Soto, T., and Cartner, A. M. (1997). “The effect of heat treatment on the physical and electrical properties of the fast ion conductor Bi8Pb5O17,” Solid State Ionics 95, 183189.CrossRefGoogle Scholar
Gattow, G. and Schröder, H. (1962). “Über wismutoxide. III. Die kristallstruktur der hochtemperaturmodifikation von wismut(III)-oxid (δ-Bi2O3),” Z. Anorg. Allg. Chem. 318, 176189.CrossRefGoogle Scholar
Ghedia, S., Locherer, T., Dinnebier, R., Prasad, D. L. V. K., Wedig, U., Jansen, M., and Senyshyn, A. (2010). “High-pressure and high-temperature multianvil synthesis of metastable polymorphs of Bi2O3: crystal structure and electronic properties,” Phys. Rev. B 82, 112.CrossRefGoogle Scholar
Gualtieri, A. F., Imovilli, S., and Prudenziati, M. (1997). “Powder X-ray diffraction data for the new polymorphic compound ω-Bi2O3,” Powder Diffr. 12, 9092.CrossRefGoogle Scholar
Harwig, H. A. (1978). “On the structure of bismuthsesquioxide: the α-, β-, γ- and δ-phase,” Z. Anorg. Allg. Chem. 444, 151166.CrossRefGoogle Scholar
Harwig, H. A. and Gerards, A. G. (1979). “The polymorphism of bismuth sesquioxide,” Thermochim. Acta 28, 121131.CrossRefGoogle Scholar
Harwig, H. A. and Weenk, J. W. (1978). “Phase relationships in bismuth sesquioxide,” Z. Anorg. Allg. Chem. 444, 167177.CrossRefGoogle Scholar
Hill, R. J. (1992). “International union of crystallography. Commission on powder diffraction. Rietveld refinement round robin. I. Analysis of standard X-ray and neutron data for PbSO4,” J. Appl. Crystallogr. 25, 589610.CrossRefGoogle Scholar
Hill, R. J. and Cranswick, L. M. D. (1994). “International union of crystallography. Commission on powder diffraction. Rietveld refinement round Robin. II. Analysis of monoclinic ZrO2,” J. Appl. Crystallogr. 25, 589610.CrossRefGoogle Scholar
Honnart, F., Boivin, J. C., Thomas, D., and De Vries, K. J. (1983). “Bismuth-lead oxide, a new highly conductive oxygen materials,” Solid State Ionics 9–10, 921924.CrossRefGoogle Scholar
Karanović, Lj., Petrović-Prelević, I., and Poleti, D. (1999). “A practical approach to Rietveld analysis. Comparison of some programs running on personal computers,” Powder Diffr. 14, 171–170.CrossRefGoogle Scholar
Knoblochova, K., Ticha, H., Schwarz, J., and Tichy, L. (2009). “Raman spectra and optical properties of selected Bi2O3–PbO–B2O3–GeO2 glasses,” Opt. Mater. 31, 895898.CrossRefGoogle Scholar
Levin, E. M. and Roth, R. S. (1964a). “Polymorphism of bismuth sesquioxide. I. Pure Bi2O3,” J. Res. Nat. Bur. Stand., Sect. A. Phys. Chem. 68(2), 189195.CrossRefGoogle Scholar
Levin, E. M. and Roth, R. S. (1964b). “Polymorphism of bismuth sesquioxide. II. Effect of oxide additions on the polymorphism of Bi2O3,” J. Res. Nat. Bur. Stand., Sect. A. Phys. Chem. 68, 197206.CrossRefGoogle Scholar
Makovicky, E. (1997). “Modular crystal chemistry of sulphosalts and other complex sulfides,” in Modular Aspects of Minerals, EMU Notes Mineral, edited by Merlino, S. (Eötvös University Press, Budapest), Vol. 1, p. 237271.CrossRefGoogle Scholar
Manier, M., Champarnaud-Mesjard, J. C., Mercurio, J. P., Bernache, D., and Frit, B. (1988). “Synthesis, sintering and dielectric properties of a new bismuth–lead–antimony oxide Bi3Pb4Sb5O21,” Mater. Chem. Phys. 19, 167178.CrossRefGoogle Scholar
Mazumdar, S. (1993). “Structure determination of PbBi12O20 from X-ray powder diffraction,” Indian J. Phys. 67(A), 4552.Google Scholar
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., and Scardi, P. (1999). “Rietveld refinement guidelines,” J. Appl. Cryst. 32, 3650.CrossRefGoogle Scholar
Mitsuyu, T., Wasa, K., and Hayakawa, S. (1976). “Piezoelectric thin films of RF-sputtered Bi12PbO19,” J. Appl. Phys. 47, 29012902.CrossRefGoogle Scholar
Murray, A. D., Catlow, C. R. A., Beech, F., and Drennan, J (1986). “A neutron powder diffraction study of the low- and high-temperature structures of Bi12PbO19,” J. Solid State Chem. 62, 290296.CrossRefGoogle Scholar
Pan, A. and Ghosh, A. (2000). “A new family of lead–bismuthate glass with a large transmitting window,” J. Non-Cryst. Solids. 271, 157161.CrossRefGoogle Scholar
Pang, G., Feng, S., Tang, Y., and Xu, R. (1998). “Hydrothermal synthesis, characterization, and ionic conductivity of vanadium-stabilized Bi17V3O33 with fluorite-related superlattice structure,” Chem. Mater. 10, 24462449.CrossRefGoogle Scholar
Poleti, D., Karanović, Lj., and Hadži-Tonić, A. (2007). “Doped γ-Bi2O3: synthesis of microcrystalline samples and crystal chemical analysis of structural data,” Z. Kristallogr. 222, 5972.CrossRefGoogle Scholar
Radaev, S. F., Muradyan, L. A., and Simonov, V. I. (1991). “Atomic structure and crystal chemistry of sillenites: Bi12(Bi3+0.50Fe3+0.50)O19.50 and Bi12(Bi3+0.67Zn2+0.33)O19.33,” Acta Crystallogr., Sect. B: Struct. Sci. 47, 16.CrossRefGoogle Scholar
Radaev, S. F. and Simonov, V. I. (1992). “Struktura sillenitov i atomnye mehanizmy izomorfnyh zameshchanii v nih,” Kristallografiya 37, 914941.Google Scholar
Radaev, S. F., Simonov, V. I., and Kargin, Yu. F. (1992). “Structural features of γ-Phase Bi2O3 and its place in the sillenite family,” Acta Crystallogr., Sect. B: Struct. Sci. 48, 604609.CrossRefGoogle Scholar
Rangavittal, N., Row, T. N. G., and Rao, C. N. R. (1994). “A study of cubic bismuth oxides of the type Bi26−xM xO40−d (M = Ti, Mn, Fe, Co, Ni or Pb) related to γ-Bi2O3,” Eur. J. Solid State Inorg. Chem. 31, 409422.Google Scholar
Reshak, A. H., Lakshminarayana, G., Proskurina, G., Yushanin, V. G., Calus, S., Chmiel, M., Miedzinski, R., and Brik, M. G. (2010). “Laser induced effects in PbO–Bi2O3–Ga2O3–BaO: Eu glasses,” Opt. Commun. 283, 30493051.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192, 5569.CrossRefGoogle Scholar
Roisnel, T. and Rodriguez-Carvajal, J. (2001). “WinPLOTR: a windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum 378–381, 118123.CrossRefGoogle Scholar
Salem, S. M. and Mohamed, E. A. (2011). “Electrical conductivity and dielectric properties of Bi2O3–GeO2–PbO–MoO3 glasses,” J. Non-Cryst. Solids 357, 11531159.CrossRefGoogle Scholar
Sammes, N. M., Tompsett, G., and Cartner, A. M. (1995). “Characterization of bismuth lead oxide by vibrational spectroscopy,” J. Mater. Sci. 30, 42994308.CrossRefGoogle Scholar
Sammes, N. M., Tompsett, G. A., Näfe, H., and Aldinger, F. (1999). “Bismuth based oxide electrolytes-structure and ionic conductivity,” J. Eur. Ceram. Soc. 19, 18011826.CrossRefGoogle Scholar
Shi, D. M. and Qian, Q. (2010). “Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses doped with Er3+ and Tm3+,” Physica B 405, 25032507.CrossRefGoogle Scholar
Shuk, P., Wiemhofer, H.-D., Guth, U., Gijpel, W., and Greenblatt, M. (1996). “Oxide ion conducting solid electrolytes based on Bi2O3,” Solid State Ionics 89, 179196.CrossRefGoogle Scholar
Sillén, L. G. (1937). “X-ray studies on bismuth trioxide,” Ark. Kemi. Miner. Geol. 12A, 115.Google Scholar
Valant, M. and Suvorov, D. (2001). “Processing and dielectric properties of sillenite compounds Bi12MO20−δ (M = Si, Ge, Ti, Pb, Mn, B1/2P1/2),” J. Am. Ceram. Soc. 84, 29002904.CrossRefGoogle Scholar
Valant, M. and Suvorov, D. (2002). “A stoichiometric model for sillenites,” Chem. Mater. 14, 34713476.CrossRefGoogle Scholar
Watanabe, A. (1997). “Bi23M 4O44.5 (M = P and V): New oxide-ion conductors with triclinic structure based on a pseudo-fcc subcell,” Solid State Ionics 96, 7581.CrossRefGoogle Scholar
Young, R. A. and Wiles, D. B. (1982). “Profile shape functions in Rietveld refinements,” J. Appl. Crystallogr. 15, 430438.CrossRefGoogle Scholar
Zyryanov, V. V. (2004). “Structure and thermal behavior of metastable sillenites prepared by mechanochemical synthesis,” J. Struct. Chem. 45, 454464.CrossRefGoogle Scholar