Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T21:56:57.712Z Has data issue: false hasContentIssue false

Effect of Dy-doping on the microstructure and magnetic properties of Y1−xDyxMnO3

Published online by Cambridge University Press:  29 May 2013

A.M. Zhang*
Affiliation:
College of Science, Hohai University, Nanjing 210098, China
G.T. Zhou
Affiliation:
College of Science, Hohai University, Nanjing 210098, China
J. Sun
Affiliation:
College of Science, Hohai University, Nanjing 210098, China
T. Xu
Affiliation:
College of Science, Hohai University, Nanjing 210098, China
L.L. Guo
Affiliation:
College of Science, Hohai University, Nanjing 210098, China
X.S. Wu
Affiliation:
Lab of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
*
a)Author to whom correspondence should be addressed. Electronic mail: njuhhu@163.com

Abstract

The effect of Dy3+ doping at A-site in hexagonal YMnO3 on the microstructure and magnetic properties was studied. Polycrystalline Y1−xDyxMnO3 samples with x ranging from 0 to 1 were synthesized by the solid-state reaction method. The microstructures of all the samples were studied by X-ray diffraction, which shows that Y1−xDyxMnO3 with a low concentration (x ≤ 0.5) of Dy3+ retains a hexagonal symmetry. The crystal structure refinements of the hexagonal Y1−xDyxMnO3 using the Rietveld method show that the unit-cell parameters of a, c, and unit-cell volume increase with increasing Dy doping, while the MnO5 trigonal bipyramids remain almost unchanged. The remarkable increasing of magnetic moment at a low temperature with increasing the Dy3+ doping concentration is ascribed to the spin order of Dy3+ and the increasing Dy3+–Mn3+ coupling and Mn3+–O–O–Mn3+ interaction.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chandra Sekhar, M., Lee, S., Choi, G., Lee, C., and Park, J.-G. (2005). “Doping effects of hexagonal manganites Er1−xYxMnO3 with triangular spin structure,” Phys. Rev. B 72, 014402.Google Scholar
Chen, W. R., Zhang, F. C., Miao, J., Xu, B., Dong, X. L., Cao, L. X., Qiu, X. G., and Zhao, B. R., Pengcheng, Dai, (2005). “Re-entrant spin glass behavior in Mn-rich YMnO3,” Appl. Phys. Lett. 87, 042508.Google Scholar
Cheong, S.-W. and Mostovoy, M. (2007). “Multiferroics: a magnetic twist for ferroelectricity,” Nat. Mater. 6, 13.CrossRefGoogle ScholarPubMed
Harikrishnan, S., Rößler, S., Naveen Kumar, C. M., Bhat, H. L., Rößler, U. K., Wirth, S., Steglich, F., and Elizabeth, S. (2009). “Phase transitions and rare-earth magnetism in hexagonal and orthorhombic DyMnO3 single crystals,” J. Phys.: Condens. Matter 21, 096002.Google ScholarPubMed
Katsufuji, T., Mori, S., Masaki, M., Moritomo, Y., Yamamoto, N., and Takagi, H. (2001). “Dielectric and magnetic anomalies and spin frustration in hexagonal, RMnO3 (R = Y, Yb, and Lu),” Phys. Rev. B 64, 104419.CrossRefGoogle Scholar
Katsufuji, T., Masaki, M., Machida, A., Moritomo, M., Kato, K., Nishibori, E., Takata, M., Sakata, M., Ohyama, K., Kitazawa, K., and Takagi, H. (2002). “Crystal structure and magnetic properties of hexagonal RMnO3 (R = Y, Lu, and Sc) and the effect of doping,” Phys. Rev. B 66, 134434.CrossRefGoogle Scholar
Lonkai, Th., Tomuta, D. G., Hoffmann, J. U., Rschneider, R., Hohlwein, D., and Ihringer, J. (2003). “Magnetic two-dimensional short-range order in hexagonal manganites,” J. Appl. Phys. 93, 8191.CrossRefGoogle Scholar
Lukaszewicz, K. and Karut-Kalicinska, J. (1974). Ferroelectrics 7, 81.CrossRefGoogle Scholar
Magesh, J., Murugavel, P., Mangalam, R. V. K., Singh, K., Simon, Ch., and Prellier, W. (2012). “Strong enhancement of magnetoelectric coupling in Dy3+ doped HoMnO3,” Appl. Phys. Lett. 101, 022902.CrossRefGoogle Scholar
Mansouri, S., Jandl, S., Laverdìere, J., Fournier, P., Mukhin, A. A., Ivanov, Yu. V. and Balbashov, A. M. (2013). “Magnetic and micro-Raman studies of hexagonal-DyMnO3,” J. Phys.: Condens. Matter 25, 066003.Google ScholarPubMed
Nandi, S., Kreyssig, A., Yan, J. Q., Vannette, M. D., Lang, J. C., Tan, L., Kim, J. W., Prozorov, R., Lograsso, T. A., McQueeney, R. J. and Goldman, A. I. (2008). “Magnetic structure of Dy3+ in hexagonal multiferroic DyMnO3,” Phys. Rev. B 78, 075118.CrossRefGoogle Scholar
Nugroho, A., Bellido, N., Adem, U., Nénert, G., Simon, Ch., Tjia, M. O., Mostovoy, M., and Palstra, T. T. M. (2007). “Ferroelectric displacements in multiferroic Y(Mn,Ga)O3,” Phys. Rev. B 75, 174435.Google Scholar
Park, J., Lee, S., Kang, M., Jang, K-H., Lee, C., Streltsov, S. V., Mazurenko, V. V., Valentyuk, M. V., Medvedeva, J. E., Kamiyama, T., and Park, J.-G. (2010). “Doping dependence of spin-lattice coupling and two-dimensional ordering in multiferroic hexagonal Y1−xLuxMnO3 (0 ≤ x ≤ 1),” Phys. Rev. B 82, 054428.CrossRefGoogle Scholar
Singh, A. K., Patnaik, S., Kaushik, S. D., and Siruguri, V. (2010). “Dominance of magnetoelastic coupling in multiferroic hexagonal YMnO3,” Phys. Rev. B 81, 184406.CrossRefGoogle Scholar
Smolenskii, G. A. and Bokov, V. A. (1964). “Coexistence of magnetic and electric ordering in crystals,” J. Appl. Phys. 35, 915.CrossRefGoogle Scholar
Vajk, O. P., Kenzelmann, M., Lynn, J. W., Kim, S. B., and Cheong, S.-W. (2005). “Magnetic order and spin dynamics in ferroelectric HoMnO3,” Phys. Rev. Lett. 94, 087601.CrossRefGoogle ScholarPubMed
Van Aken, B. B., Palstra, T. T. M., Filippetti, A., and Spaldin, N. A. (2004). “The origin of ferroelectricity in magnetoelectric YMnO3,” Nat Mater 3, 164.CrossRefGoogle ScholarPubMed
Yakel, H. L., Koehler, W. C., Bertaut, E. F., and Forrat, E. F. (1963). “On the crystal structure of the manganese (III) trioxides of the heavy lanthanides and yttrium,” Acta Crystallogr. 16, 957.Google Scholar
Zhang, A. M., Zhu, W. H., Wu, X. S., and Qing, B. (2011). “Effect of Al doping on the microstructure properties of YMn1−xAlxO3,” J. Crystal Growth, 318, 912.CrossRefGoogle Scholar