Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-27T07:16:56.657Z Has data issue: false hasContentIssue false

Crystal structure determination from powder diffraction data of the coumarin vanillin chalcone

Published online by Cambridge University Press:  13 August 2014

Afef Ghouili
Affiliation:
Unité de Recherche de Chimie des Matériaux et de l'Environnement, UR11ES25, ISSBAT, Université de Tunis El Manar, 9, Avenue Dr. Zoheir SAFI, 1006 Tunis, Tunisia
Jan Rohlicek*
Affiliation:
Institute of Physics ASCR, v. v. i., Na Slovance 2, 182 21 Praha, Czech Republic
Taïcir Ben Ayed
Affiliation:
Unité de Recherche de Chimie des Matériaux et de l'Environnement, UR11ES25, ISSBAT, Université de Tunis El Manar, 9, Avenue Dr. Zoheir SAFI, 1006 Tunis, Tunisia
Rached Ben Hassen
Affiliation:
Unité de Recherche de Chimie des Matériaux et de l'Environnement, UR11ES25, ISSBAT, Université de Tunis El Manar, 9, Avenue Dr. Zoheir SAFI, 1006 Tunis, Tunisia
*
a)Author to whom correspondence should be addressed. Electronic mail: rohlicek@fzu.cz

Abstract

4-hydroxy-3-methoxyphenyl-4-hydroxycoumarin chalcone (C19H14O6) was synthesized by the Claisen–Schmidt reaction with the condensation of 3-acetyl-4-hydroxycoumarin with 4-hydroxy-3-methoxybenzaldehyde (vanillin). The new compound was characterized by Fourier transform infrared microscopy, UV–vis 1H, and 13C NMR spectroscopy and its crystal structure was ab initio determined from laboratory X-ray powder diffraction data. The crystal structure is monoclinic with unit-cell parameters a = 14.3181(4), b = 8.040 71(9), c = 13.5524(3), β = 100.3559(13)°, V = 1534.84(6) Å3, and space group P21/c.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrieta, A. F. and Mostad, A. (2004). “5-(4-Hydroxy-3-methoxyphenyl)-1-phenylpent-4-ene-1,3-dione,” Acta Crystallogr. E 60, o919o921.CrossRefGoogle Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.Google Scholar
Claisen, L. and Claparède, A. (1881). “Condensationen von Ketonen mit Aldehyden,” Berichte der deutschen chemischen Gesellschaft 14(2), 24602468.Google Scholar
Dholakia, V. N., Parekh, M. G., and Trivedi, K. N. (1968). “Studies in 4-hydroxy coumarins. II. α- and γ-Pyrones from 4-hydroxy coumarins,” Aust. J. Chem. 21, 23452347.Google Scholar
Dimmock, J. R., Kandepu, N. M., Hetherington, M., Wilson, Q. J., Pugazhenti, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., De Clercq, E., and Balzarini, J. (1998). “Cytotoxic activities of Mannich bases of chalcones and related compounds,” J. Med. Chem. 41, 10141026.Google Scholar
Donovalova, J., Cigan, M., Stankovicova, H., Gaspar, J., Danko, M., Gaplovsky, A., and Hrdlovic, P. (2012). “Spectral properties of substituted coumarins in solution and polymer matrices,” Molecules 17, 32593276.CrossRefGoogle ScholarPubMed
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Ghouili, A. and Ben Hassen, R. (2011). “4-Hydroxy-3-[(E)-3-phenylprop-2-enoyl]-2H-chromen-2-one,” Acta Crystallogr. E 67, o2209.CrossRefGoogle Scholar
Ghouili, A., Dusek, M., Petricek, V., Ben Ayed, T., and Ben Hassen, R. (2014). “Synthesis, crystal structure and spectral characteristics of highly fluorescent chalcone-based coumarin in solution and in polymer matrix,” J. Phys. Chem. Solids 75, 188193.CrossRefGoogle Scholar
Hamdi, N., Saoud, M., Romerosa, A., and Ben Hassen, R. (2008). “Synthesis, spectroscopic and antibacterial investigations of new hydroxy ethers and heterocyclic coumarin derivatives,” J. Heterocycl. Chem. 45, 18351842.Google Scholar
Hamdi, N., Bouabdallah, F., Romerosa, A., and Ben Hassen, R. (2010). “Expedious synthesis for α, β-unsaturated coumarin derivatives using boran chelates: a novel class of potential ntibacterial and antioxidant agents,” C. R. Chim. 13, 12611268.Google Scholar
Jang, S., Jung, J.-C., and Oh, S. (2007). “Synthesis of 1,3-diphenyl-2-propen-1-one derivatives and evaluation of their biological activities,” Bioorg. Med. Chem. 15(12), 40984105.Google Scholar
Manaev, A. V., Chibisova, T. A., Lyssenko, K. A., Antipin, M. Y., and Traven, V. F. (2006a). “Synthesis and structures of boron complexes of acyl hydroxy coumarins,” Russ. Chem. Bull. 55, 20912094.CrossRefGoogle Scholar
Manaev, A. V., Chibisova, T. A., and Traven, V. F. (2006b). “Boron chelates in the synthesis of α, β-unsaturated ketones of the coumarin series,” Russ. Chem. Bull. 55, 22262232.Google Scholar
Mechi, L., Chtiba, S., Hamdi, N., and Ben Hassen, R. (2009). “4-Hydroxy-3-[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]-2H-chromen-2-one,” Acta Crystallogr. E 65, o1652o1653.CrossRefGoogle Scholar
Naruka, S. G. and Mahajan, S. S. (2011). “Conventional and microwave assisted synthesis and qsar studies of coumarinylchalcones as potent antimicrobial agents,” Int. J. Res. Pharm. Chem. 4, 879890.Google Scholar
Naseema, K., Sujith, K. V., Manjunatha, K. B., Kalluraya, B., Umesh, G., and Rao, V. (2010). “Synthesis, characterization and studies on the nonlinear optical parameters of hydrazones,” Opt. Laser Technol. 42, 741748.CrossRefGoogle Scholar
Nguyen, A., Vessieres, A., Hillard, E. A., Top, S., Pigeon, P., and Jaouen, G. (2007). “Ferrocifens and ferrocifenols as new potential weapons against breast cancer,” Chimia 61, 716724.Google Scholar
Patel, K., Karthikeyan, C., Moorthy, N. S. H. N., Deora, G. S. S. V. R., Lee, H., and Trivedi, P. (2012). “Design, synthesis and biological evaluation of some novel 3-cinnamoyl-4-hydroxy-2H-chromen-2-ones as antimalarial agents,” Med. Chem. Res. 21(8), 17801784.Google Scholar
Petricek, V., Dusek, M., and Palatinus, L. (2006). Jana2006. The Crystallographic Computing System (Institute of Physics, Praha, Czech Republic).Google Scholar
Schmidt, J. G. (1881). “Ueber die Einwirkung von Aceton auf Furfurol und auf Bittermandelöl bei Gegenwart von Alkalilauge,” Berichte der deutschen chemischen Gesellschaft 14(1), 14591461.Google Scholar
Shirley, R. (2000). CRYSFIRE User's Manual (The Lattice Press, Guildford, England).Google Scholar
Sun, Y. F. and Cui, Y. P. (2008). “The synthesis, characterization and properties of coumarin-based chromophores containing a chalcone moiety,” Dyes Pigment 78, 6576.Google Scholar
To, S., Tang, J., Vessieres, A., Carrez, D., Provot, C., and Jaouen, G. (1996). “Ferrocenyl hydroxytamoxifen: a prototype for a new range of oestradiol receptor site-directed cytotoxics,” Chem. Commum. 8, 955956.Google Scholar
Supplementary material: Image

Ghouili Supplementary Material

Figure S1

Download Ghouili Supplementary Material(Image)
Image 53.1 KB
Supplementary material: Image

Ghouili Supplementary Material

Figure S2

Download Ghouili Supplementary Material(Image)
Image 47.5 KB
Supplementary material: Image

Ghouili Supplementary Material

Figure S3

Download Ghouili Supplementary Material(Image)
Image 62.2 KB
Supplementary material: Image

Ghouili Supplementary Material

Figure S4

Download Ghouili Supplementary Material(Image)
Image 51.4 KB