Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T03:07:07.424Z Has data issue: false hasContentIssue false

Application of the Rietveld Refinement Procedure in Assaying Powdered Mixtures

Published online by Cambridge University Press:  10 January 2013

Brian H. O'Connor
Affiliation:
School of Physics and Geosciences, Curtin University of Technology, Perth, Western Australia.
Mark D. Raven
Affiliation:
School of Physics and Geosciences, Curtin University of Technology, Perth, Western Australia.

Abstract

Results are given of an assessment of a Rietveld-type X-ray powder diffraction pattern fitting structure refinement technique for assaying powdered mixtures as an alternative to conventional discrete peak empirical methods of the type described by Klug and Alexander (1974) and Chung (1974). The values obtained for a mixture of corundum and α-quartz, following calibration of the instrument with a profile of the former, indicate that this technique has excellent potential as an analytical tool.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altree-Williams, S., Byrnes, J.G. and Norman, M.B. (1981). Ann. Occup. Hygiene 24, 347356.Google Scholar
Chung, F.H. (1974). J. Appl.Crystallogr. 7, 519525.CrossRefGoogle Scholar
Hill, R.J. (1984). Am. Mineral. 69, 937942.Google Scholar
Hill, R.J. and Howard, C.J. (1983). Revision of Program for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns: DBW 3.2, D. B. Wiles, Georgia Institute of Technology.Google Scholar
International Tables for X-ray Crystallography (1974). Vol. IV, Revised and Supplementary Tables to Volumes II and III, ed. Ibers, J. A. and Hamilton, W.C.. Kynoch: Birmingham.Google Scholar
Klug, H.P. and Alexander, L.E. (1974). X-ray Diffraction Procedures, 2d ed., pp 531562. New York: J. Wiley and Sons.Google Scholar
Le Page, Y. and Donnay, G. (1976). Acta Crystallogr. B32, 24562459.Google Scholar
Lewis, J. Schwarzenbach, D., and Flack, H.D. (1982). Acta Crystallogr. A38, 733739.CrossRefGoogle Scholar
McMaster, W.H., Del Grande, N.K., Mallett, J.H. and Hubbell, H.H. (1969). Compilation of X-ray Cross-Sections. UCRL-50174, Section II Revision I, Lawrence Livermore Laboratory, University of California, Livermore, California.Google Scholar
Norrish, K. and Chappell, B.W. (1977) X-ray Fluorescence Spectrometry, in of Physical Methods of Determinative Mineralogy 2d ed., ed. Zussman, J., chapter 5, 242244. Academic Press: London.Google Scholar
O'Connor, B.H. and Chang, W.J. (1986). X-ray Spectrometry 15, 267270.CrossRefGoogle Scholar
Raven, M.J. and O'Connor, B.H. (1987). X-ray powder diffraction study of α-quartz / corundum mixture - compilation of measured and calculated profile intensity data. Curtin University of Technology, School of Physics and Geosciences, Internal Report SPG 440/1987/AP 133.Google Scholar
Reynolds, R.C. (1963). Am. Mineral. 48, 11331143.Google Scholar
Rietveld, H.M. (1967). Acta Crystallogr. 22, 151152.CrossRefGoogle Scholar
Rietveld, H.M. (1969). J. Appl. Crystallogr. 2, 6571.Google Scholar
Suortti, P. and Jennings, L.D. (1977). Acta Crystallogr. A33, 10121027.CrossRefGoogle Scholar
Tertian, R. and Claisse, F. (1982). Principles of Quantitative X-ray Fluorescence Analysis, pp 278280, Heyden: London.Google Scholar
Wiles, D.B. and Young, R.A. (1981). J. Appl. Crystallogr. 14, 149151.CrossRefGoogle Scholar
Wyckoff, H.C. (1963). Crystal Structures, 2d ed. Vol. I, pp 312313. Volume II, pp 6-8. Interscience.Google Scholar
Young, R.A. (1980). Accuracy in Powder Diffraction. NBS Spec. Publ. (U.S.) 567, pp 143162. Natl. Bur. Standards: Gaithersburg, MD 20899.Google Scholar
Young, R.A., Prince, E. and Sparks, R.A. (1982). J. Appl. Crystallogr. 15, 357359.Google Scholar