Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T16:54:01.992Z Has data issue: false hasContentIssue false

Rietveld refinement of transition metal doped ZnO

Published online by Cambridge University Press:  06 March 2012

D. A. A. Santos
Affiliation:
Physics Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
A. D. P. Rocha
Affiliation:
Physics Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
M. A. Macêdo
Affiliation:
Physics Department, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil

Abstract

Nanocrystals of Zn1−xMxO (M=Mn, Co, or Ni) were grown using proteic sol-gel process, and the crystalline phases were identified by X-ray diffraction and Rietveld refinement. The nanocrystals have hexagonal wurtzite structure, with space group P63mc. The insertion of Mn2+ in the place of Zn2+ provoked an increase in the size of the nanocrystals, and the insertion of Co2+ or Ni2+ caused a reduction in the sizes of the nanocrystals, as compared to pure ZnO. This occurred because these three transition metals have very different ionic radii (Co2+=0.58 A˚, Mn2+=0.66 A˚, Ni2+=0.55 A˚, and Zn2+=0.60 A˚).

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. A., (Eds.) (1965). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, Mineola, NY), 1st ed., p. 11.Google Scholar
Auffrédic, J.-P., Boultif, A., Langford, J.I., and Louër, D. (1995). “Early stages of crystallite growth of ZnO obtained from an oxalate precursor,” J. Am. Ceram. Soc.JACTAW 78, 323328. jac, JACTAW CrossRefGoogle Scholar
Bates, C.H., White, W.B., and Roy, R. (1962). “New high-pressure polymorph of zinc oxide,” ScienceSCIEAS 137, 993. sci, SCIEAS CrossRefGoogle Scholar
Brinker, C.J. and Scherer, G.W. (1990). Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego).Google Scholar
Brito, P.C. A., Gomes, R.F., Duque, J.G. S., and Macêdo, M.A. (2006). “SrFe12O19 prepared by the proteic sol-gel process,” Physica B: Condens. Matter 384, 9193.CrossRefGoogle Scholar
Decremps, F., Datchi, F., Saitta, A.M., Polian, A., Pascarelli, S., Cicco, A.D., Itié, J.P., and Baudelet, F. (2003). “Local structure of condensed zinc oxide,” Phys. Rev. B: Condens. Matter 68, 104101.CrossRefGoogle Scholar
Decremps, F., Pellicer-Porres, J., Datchi, F., Itié, J.P., Polian, A., Baudelet, F., and Jiang, J.Z. (2002). “Trapping of cubic ZnO nanocrystallites at ambient conditions,” Appl. Phys. Lett.APPLAB 81, 48204822. apl, APPLAB CrossRefGoogle Scholar
Desgreniers, S. (1998). “High-density phases of ZnO: Structural and compressive parameters,” Phys. Rev. B: Condens. Matter 58, 14102.CrossRefGoogle Scholar
Dhage, S.R., Pasricha, R., and Ravi, V. (2005). “Synthesis of fine particles of ZnO at 100 °C,” Mater. Lett.MLETDJ 59, 779781. mal, MLETDJ CrossRefGoogle Scholar
Ekambaram, S. (2005). “Combustion synthesis and characterization of new class of ZnO-based ceramic pigments,” J. Alloys Compd.JALCEU 390, L4L6. jal, JALCEU CrossRefGoogle Scholar
Fortes, S.S., Duque, J.G. S., and Macêdo, M.A. (2006). “Nanocrystals of BaFe12O19 obtained by the proteic sol-gel process,” Physica B: Condens. Matter 384, 8890.CrossRefGoogle Scholar
Gerward, L. and Olsen, J.S. (1995). “The high-pressure phase of zincite,” J. Synchrotron Radiat.JSYRES 2, 233235. jsy, JSYRES CrossRefGoogle ScholarPubMed
Jaffe, J.E. and Hess, A.C. (1993), “Hartree-Fock study of phase changes in ZnO at high pressure,” Phys. Rev. B: Condens. Matter 48, 79037909.CrossRefGoogle ScholarPubMed
Jaffe, J.E., Snyder, J.A., Lin, Z., and Hess, A.C. (2000). “LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO,” Phys. Rev. B: Condens. Matter 62, 16601665.CrossRefGoogle Scholar
Jayakumar, O.D., Salunke, H.G., Kadam, R.M., Mohapatra, M., Yaswant, G., and Kulshreshtha, S.K. (2006). “Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method,” NanotechnologyNNOTER 17, 12781285. nno, NNOTER CrossRefGoogle Scholar
Karzel, H., Potzel, W., Köfferlein, M., Schiessl, W., Steiner, M., Hiller, U., Kalvius, G.M., Mitchell, D.W., Das, T.P., Blaha, P., Schwarz, K., and Pasternak, M.P. (1996). “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures,” Phys. Rev. B: Condens. Matter 53, 1142511438.CrossRefGoogle ScholarPubMed
Komarneni, S., Bruno, M., and Mariani, E. (2000). “Synthesis of ZnO with and without microwaves,” Mater. Res. Bull.MRBUAC 35, 18431847. mrb, MRBUAC CrossRefGoogle Scholar
Kutty, T.R. N. and Padmini, P. (1992). “Wet chemical formation of nanoparticles of binary perovskites through isothermal gel to crystallite conversion,” Mater. Res. Bull.MRBUAC 27, 945952. mrb, MRBUAC CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86–748). (Los Alamos National Laboratory, Los Alamos, New Mexico).Google Scholar
Liu, H., Ding, Y., Somayazulu, M., Qian, J., Shu, J., Häusermann, D., and Mao, H. (2005). “Rietveld refinement study of the pressure dependence of the internal structural parameter u in the wurtzite phase of ZnO,” Phys. Rev. B: Condens. Matter 71, 212103.CrossRefGoogle Scholar
Liu, H., Tse, J.S., and Mao, H.-k. (2006). “Stability of rocksalt phase of zinc oxide under strong compression: Synchrotron x-ray diffraction experiments and first-principles calculation studies,” J. Appl. Phys.JAPIAU 100, 093509. jap, JAPIAU CrossRefGoogle Scholar
Mandal, S.K., Das, A.K., Nath, T.K., and Karmakar, D. (2006). “Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles,” Appl. Phys. Lett.APPLAB 89, 144105. apl, APPLAB CrossRefGoogle Scholar
Meneses, C.T., Vicentin, F.C., Sasaki, J.M., and Macêdo, M.A. (2007). “Influence of Li on the K-edge of O and L2,3 of the Mn XANES in LixMn2O4 thin films,” J. Electron Spectrosc. Relat. Phenom.JESRAW 156–158, 326328. jer, JESRAW CrossRefGoogle Scholar
Mori, Y., Niiya, N., Ukegawa, K., Mizuno, T., Takarabe, K., and Ruoff, A.L. (2004). “High-pressure X-ray structural study of BeO and ZnO to 200 GPa,” Phys. Status Solidi BPSSBBD 241, 31983202. psb, PSSBBD CrossRefGoogle Scholar
Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., and Steiner, T. (2004). “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. BJVTBD9 22, 932948. jvb, JVTBD9 CrossRefGoogle Scholar
Recio, J.M., Blanco, M.A., Luaña, V., Pandey, R., Gerward, L., and Olsen, J.S. (1998). “Compressibility of the high-pressure rocksalt phase of ZnO,” Phys. Rev. B: Condens. Matter 58, 89498954.CrossRefGoogle Scholar
Sakohara, S., Honda, S., Yahai, Y., and Anderson, M.A. (2001). “Preparation and optical properties of nano-sized ZnO colloidal particles using NH3 gas as volatile catalyst,” J. Chem. Eng. Jpn.JCEJAQ 34, 1521. jjq, JCEJAQ CrossRefGoogle Scholar
Santos, C.O. P. (2006). “Applications of the method of Rietveld,” in Class Notes (Institute of Chemistry, State University of São Paulo, São Paulo, Brazil).Google Scholar
Stephens, P.W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr.JACGAR 32, 281289. acr, JACGAR CrossRefGoogle Scholar
Sun, X.W., Liu, Z.J., Chen, Q.F., Lu, H.W., Song, T., and Wang, C.W. (2006). “Heat capacity of ZnO with cubic structure at high temperatures,” Solid State Commun.SSCOA4 140, 219224. ssc, SSCOA4 CrossRefGoogle Scholar
Tsuchida, T. and Kitajima, S. (1990). “Preparation of uniform zinc oxide particles by homogeneous precipitation from zinc sulfate and nitrate solutions,” Chem. Lett.CMLTAG 19, 17691772. chl, CMLTAG CrossRefGoogle Scholar
Wang, Z.L. (2004). “Zinc oxide nanostructures: Growth, properties and applications,” J. Phys.: Condens. MatterJCOMEL 16, R829-R858. jcz, JCOMEL Google Scholar
Yin, S., Xu, M.X., Yang, L., Liu, J.F., Rösner, H., Hahn, H., Gleiter, H., Schild, D., Doyle, S., Liu, T., Hu, T.D., Takayama-Muromachi, E., and Jiang, J.Z., Phys. Rev. B: Condens. Matter 73, 224408.Google Scholar
Zhang, Y.B. and Sritharan, T. (2006). “Distinct spins of substituent Co in polycrystalline Zn1−xCoxO oxides,” Phys. Rev. B: Condens. Matter 73, 172404.CrossRefGoogle Scholar