Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-25T11:56:39.244Z Has data issue: false hasContentIssue false

Internal stresses and textures of nanostructured alumina scales growing on polycrystalline Fe3Al alloy

Published online by Cambridge University Press:  29 February 2012

Pedro Brito*
Affiliation:
Institut für Angewandte Materialforschung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, Berlin 12489, Germany
Haroldo Pinto
Affiliation:
Departamento de Engenharia de Materiais, Aeronáutica e Automobilística, Universidade de São Paulo, Av. Trabalhador São Carlense 400, São Carlos 13566-590, Brazil
Manuela Klaus
Affiliation:
Institut für Angewandte Materialforschung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, Berlin 12489, Germany
Christoph Genzel
Affiliation:
Institut für Angewandte Materialforschung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, Berlin 12489, Germany
Anke Kaysser-Pyzalla
Affiliation:
Institut für Angewandte Materialforschung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, Berlin 12489, Germany
*
Author to whom correspondence should be addressed. Electronic mail: ppbrito@gmail.com

Abstract

The evolution of internal stresses in oxide scales growing on polycrystalline Fe3Al alloy in atmospheric air at 700 °C was determined using in situ energy-dispersive synchrotron X-ray diffraction. Ex situ texture analyses were performed after 5 h of oxidation at 700 °C. Under these conditions, the oxide-scale thickness, as determined by X-ray photoelectron spectroscopy, lies between 80 and 100 nm. The main phase present in the oxide scales is α-Al2O3, with minor quantities of metastable θ-Al2O3 detected in the first minutes of oxidation, as well as α-Fe2O3. α-Al2O3 grows with a weak (0001) fiber texture in the normal direction. During the initial stages of oxidation the scale develops, increasing levels of compressive stresses which later evolve to a steady state condition situated around −300 MPa.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asteman, H. and Spiegel, M. (2008). “A comparison of the oxidation behaviours of Al2O3 formers and Cr2O3 formers at 700 °C—Oxide solid solutions acting as a template for nucleation,” Corros. Sci. CRRSAA 50, 17341743.10.1016/j.corsci.2007.12.012CrossRefGoogle Scholar
Blachère, J. R., Schumann, E., Meier, G. H., and Pettit, F. S. (2003). “Texture of alumina scales on FeCrAl alloys,” Scr. Mater. SCMAF7 49, 909912.10.1016/S1359-6462(03)00403-2CrossRefGoogle Scholar
Clarke, D. R. (2002). “Stress generation during high-temperature oxidation of metallic alloys,” Curr. Opin. Solid State Mater. Sci. COSSFX 6, 237244.10.1016/S1359-0286(02)00074-8CrossRefGoogle Scholar
Clarke, D. R. (2003). “The lateral growth strain accompanying the formation of thermally grown oxide,” Acta Mater. ACMAFD 51, 13931407.10.1016/S1359-6454(02)00532-3Google Scholar
Eklund, P., Sridharan, M., Sillassen, M., and Bøttiger, J. (2008). “α -Cr2O3 texture template effect on α-Al2O3 thin-film growth,” Thin Solid Films THSFAP 516, 74477450.10.1016/j.tsf.2008.03.038Google Scholar
Eschler, H., Martinez, E. A., and Singheiser, L. (2004). “Residual stresses in alumina scales grown on different types of Fe-Cr-Al alloys: Effect of specimen geometry and cooling rate,” Mater. Sci. Eng., A MSAPE3 384, 111.Google Scholar
Evans, H. E. (1995). “Stress effects in high temperature oxidation of metals,” Int. Mater. Rev. INMREO 40, 140.Google Scholar
Genzel, Ch., Denks, I. A., Gibmeier, J., Klaus, M., and Wagener, G. (2007). “The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis,” Nucl. Instrum. Methods Phys. Res. A NIMAER 578, 2333.10.1016/j.nima.2007.05.209Google Scholar
Grabke, H. J. (1999). “The oxidation of NiAl and FeAl,” Intermetallics IERME5 7, 11531158.10.1016/S0966-9795(99)00037-0Google Scholar
Hou, P. Y., Paulikas, A. P., Veal, B. W., and Smialek, J. L. (2007). “Thermally grown Al2O3 on H2-annealed Fe3Al alloy: Stress evolution and film adhesion,” Acta Mater. ACMAFD 55, 56015613.10.1016/j.actamat.2007.06.018CrossRefGoogle Scholar
Huntz, A. M., Hou, P. Y., and Molins, R. (2007). “Study by deflection of the oxygen pressure influence on the phase transformation in alumina thin films formed by oxidation of Fe3Al,” Mater. Sci. Eng., A MSAPE3 467, 5970.10.1016/j.msea.2007.02.089CrossRefGoogle Scholar
Juricic, C., Pinto, H., Cardinali, D., Klaus, M., Genzel, Ch., and Pyzalla, A. R. (2010). “Effect of substrate grain size on the growth, texture and internal stresses of iron oxide scales forming at 450 °C,” Oxid. Met. OXMEAF 73, 1541.10.1007/s11085-009-9162-1Google Scholar
Karadge, M., Zhao, Y., Preuss, M., and Xiao, P. (2006). “Microtexture of thermally grown alumina in commercial thermal barrier coatings,” Scr. Mater. SCMAF7 54, 639644.10.1016/j.scriptamat.2005.10.043CrossRefGoogle Scholar
Lee, I. J., Kim, J. -Y., Yu, C., Chang, C. -H., Joo, M. -K., Lee, Y. P., Hur, T. -B., and Kim, H. -K. (2005). “Morphological and structural characterization of epitaxial α-Fe2O3 (0001) deposited on α-Al2O3 (0001) by dc sputter deposition,” J. Vac. Sci. Technol. A JVTAD6 23, 14501455.10.1116/1.2013321Google Scholar
Levin, I. and Brandon, D. (1998). “Metastable alumina polymorphs: Crystal structures and transition sequences,” J. Am. Ceram. Soc. JACTAW 81, 19952012.Google Scholar
Limarga, A. M., Wilkinson, D. S., and Weatherly, G. C. (2004). “Modeling of oxidation-induced growth stresses,” Scr. Mater. SCMAF7 50, 14751479.10.1016/j.scriptamat.2004.03.001CrossRefGoogle Scholar
Mennicke, C., Clarke, D. R., and Rühle, M. (2001). “Stress relaxation in thermally grown alumina scales on heating and cooling FeCrAl and FeCrAlY alloys,” Oxid. Met. OXMEAF 55, 551569.10.1023/A:1010316000529Google Scholar
Messaoudi, K., Huntz, A. M., and Di Menza, L. (2000). “Residual stress in alumina scales: Experiments, modeling, and stress-relaxation phenomena,” Oxid. Met. OXMEAF 53, 4975.10.1023/A:1004530729859Google Scholar
Panicaud, B., Grosseau-Poussard, J. L., and Dinhut, J. F. (2006). “On the growth strain origin and stress evolution prediction during oxidation of metals,” Appl. Surf. Sci. ASUSEE 252, 57005713.10.1016/j.apsusc.2005.07.075Google Scholar
Pöter, B., Stein, F., Wirth, R., and Spiegel, M. (2005). “Early Stages of protective oxide layer growth on binary iron aluminides,” Z. Phys. Chem. ZPCFAX 219, 14891503.Google Scholar
Prescott, R. and Graham, M. J. (1992). “The oxidation of iron aluminum alloys,” Oxid. Met. OXMEAF 38, 7387.10.1007/BF00665045Google Scholar
Reddy, A., Hovis, D. B., Heuer, A., Paulikas, A. P., and Veal, B. W. (2007). “In-situ study of oxidation-induced growth strains in a model NiCrAlY bond-coat alloy,” Oxid. Met. OXMEAF 67, 153177.10.1007/s11085-006-9044-8Google Scholar
Renusch, D., Grimsditch, M., Koshelev, I., Veal, B. W., and Hou, P. Y. (1997). “Strain determination in thermally-grown alumina scales using fluorescence spectroscopy,” Oxid. Met. OXMEAF 48, 471495.10.1007/BF02153461CrossRefGoogle Scholar
Rhines, F. N. and Wolf, J. S. (1970). “The role of oxide microstructure and growth stresses in the high temperature scaling of nickel,” Metall. Trans. MTGTBF 1, 17011710.10.1007/BF02642020Google Scholar
Rybicki, G. C. and Smialek, J. L. (1989). “Effect of θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl+Zr, ” Oxid. Met. OXMEAF 31, 275304.10.1007/BF00846690Google Scholar
Schumann, E., Sarioglu, C., Blachere, J. R., Pettit, F. S., and Meier, G. H. (2000). “High-temperature stress measurements during the oxidation of NiAl,” Oxid. Met. OXMEAF 53, 259272.10.1023/A:1004585003083CrossRefGoogle Scholar
Specht, E. D., Tortorelli, P. F., and Zschack, P. (2004). “In situ measurement of growth stress in alumina scale,” Powder Diffr. PODIE2 19, 6973.10.1154/1.1649318Google Scholar
Sun, J., Stirner, T., and Matthews, A. (2006). “Structure and surface energy of low-index surfaces of stoichiometric α-Al2O3 and α -Cr2O3,” Surf. Coat. Technol. SCTEEJ 201, 42054208.10.1016/j.surfcoat.2006.08.061CrossRefGoogle Scholar
Tolpygo, V. K. and Clarke, D. R. (1999). “Alumina scale failure resulting from stress relaxation,” Surf. Coat. Technol. SCTEEJ 120–121, 17.10.1016/S0257-8972(99)00331-XCrossRefGoogle Scholar
Veal, B. W. and Paulikas, A. P. (2008). “Growth strains and creep in thermally grown alumina: Oxide growth mechanisms,” J. Appl. Phys. JAPIAU 104, 093525.10.1063/1.3009973CrossRefGoogle Scholar
Veal, B. W., Paulikas, A. P., and Hou, P. Y. (2006). “Tensile stress and creep in thermally grown oxide,” Nat. Mater. 5, 349351.10.1038/nmat1626CrossRefGoogle ScholarPubMed
Wang, C. -M., Thevuthasan, S., Gao, F., McCready, D. E., and Chambers, S. A. (2002). “The characteristics of interface misfit dislocations for epitaxial α-Fe2O3 on α-Al2O3 (0001),” Thin Solid Films THSFAP 414, 3138.10.1016/S0040-6090(02)00452-2Google Scholar
Welzel, U. and Leoni, M. (2002). “Use of polycapillary X-ray lenses in the X-ray diffraction measurement of texture,” J. Appl. Crystallogr. JACGAR 35, 196206.10.1107/S0021889802000481Google Scholar
Wenk, H. R., Mathhies, S., Donovan, J., and Chateigner, D. (1998). “BEARTEX: A Windows based program system for quantitative texture analysis,” J. Appl. Crystallogr. JACGAR 31, 262269.10.1107/S002188989700811XGoogle Scholar