Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-x5mqb Total loading time: 0.258 Render date: 2021-12-02T10:45:36.380Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Crystal structure of ivermectin hemihydrate ethanolate, (C48H74O14)(H2O)0.5(C2H5OH)0.82

Published online by Cambridge University Press:  15 September 2021

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616, USA North Central College, 131 S. Loomis St., Naperville, Illinois 60540, USA
Allison Tanis
Affiliation:
North Central College, 131 S. Loomis St., Naperville, Illinois 60540, USA
Alyssa Tovar
Affiliation:
North Central College, 131 S. Loomis St., Naperville, Illinois 60540, USA
Nicholas C. Boaz
Affiliation:
North Central College, 131 S. Loomis St., Naperville, Illinois 60540, USA
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

Abstract

The crystal structure of ivermectin hemihydrate ethanolate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Ivermectin hemihydrate ethanolate crystallizes in space group C2 (#5) with a = 40.9374(10), b = 9.26951(6), c = 14.9488(2) Å, β = 73.047(1)°, V = 5426.12(8) Å3, and Z = 4. The structure consists of layers of ivermectin molecules parallel to the bc-plane. The water and ethanol molecules reside in small voids in the structure. The water molecule, the ethanol molecule, and hydroxyl groups act as donors in O–H⋯O hydrogen bonds. Several C–H⋯O hydrogen bonds were detected. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.CrossRefGoogle Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.CrossRefGoogle ScholarPubMed
Dassault Systèmes (2019). Materials Studio 2019 (BIOVIA, San Diego, CA).Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.CrossRefGoogle Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gates-Rector, S. and Blanton, T. N. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr. 34(4), 352–260.CrossRefGoogle Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals - the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
Gottlieb, H. E., Kotlyar, V., and Nudelman, A. (1997). “NMR chemical shifts of common laboratory solvents as trace impurities,” J. Org. Chem. 62, 75127515.CrossRefGoogle ScholarPubMed
Grobler, M. L. J. (2016). “Crystal polymorphism and pseudopolymorphism of ivermectin,” Master's Thesis, North-West University, Potchefstroom, South Africa.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.CrossRefGoogle ScholarPubMed
Heidary, F. and Gharebaghi, R. (2020). “Ivermectin: a systematic review from antiviral effects to COVID-19 complimentary regimen,” J. Antibiotics 73, 593602.CrossRefGoogle Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.CrossRefGoogle Scholar
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.CrossRefGoogle Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J, Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C, Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15(5), 427432.CrossRefGoogle ScholarPubMed
Louër, D. and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powder Diffr. 29, S7S12.CrossRefGoogle Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., and Wood, P. A. (2020). “Mercury 4.0; from visualization to design and prediction,” J. Appl. Crystallogr. 53, 226235.CrossRefGoogle ScholarPubMed
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).Google Scholar
MDI (2019). MDI JADE Pro Version 7.7 (Materials Data, Livermore, CA).Google Scholar
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. Sect. B: Cryst. Eng. Mater. 74, 239252. doi:10.1107/S2052520618002330.CrossRefGoogle ScholarPubMed
Rolim, L. A., do Santos, F. C. M., Chaves, L. L., Goncalves, M. L. C. M., Freitas-Neto, J. L., do Nascimento, A. L. d. S., Soares-Sobrinho, J. L., de Albuquerque, M. M., de Lima, M. d. C. A., and Rolim-Neto, P. J. (2014). “Preformulation study of ivermectin raw material,” J. Therm. Anal. Calorim. doi:10.1007/s10973-014-3691-9.Google Scholar
Seppala, E., Kolehmainen, E., Osmialowski, B., and Gawinecki, R. (2014). CSD Communication; Refcode BIFYOF.Google Scholar
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.CrossRefGoogle ScholarPubMed
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.CrossRefGoogle Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). Available at: http://hirshfeldsurface.net.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.CrossRefGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.CrossRefGoogle Scholar
Wavefunction, Inc. (2019). Spartan ‘18 Version 1.4.4, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine, CA 92612.Google Scholar
Supplementary material: File

Kaduk et al. supplementary material

Kaduk et al. supplementary material

Download Kaduk et al. supplementary material(File)
File 594 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Crystal structure of ivermectin hemihydrate ethanolate, (C48H74O14)(H2O)0.5(C2H5OH)0.82
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Crystal structure of ivermectin hemihydrate ethanolate, (C48H74O14)(H2O)0.5(C2H5OH)0.82
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Crystal structure of ivermectin hemihydrate ethanolate, (C48H74O14)(H2O)0.5(C2H5OH)0.82
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *