Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T17:19:25.321Z Has data issue: false hasContentIssue false

Vaccination against ectoparasites

Published online by Cambridge University Press:  02 February 2007

P. WILLADSEN
Affiliation:
CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067 Australia

Abstract

Ectoparasites of livestock are of great economic and social importance but their effective control remains difficult. The feasibility of vaccination as a novel control measure was established over a decade ago with the commercial release of a recombinant vaccine against the cattle tick Boophilus microplus. Since then, research has continued on ticks and other ectoparasites. While some ectoparasite species will undoubtedly be refractory to immunological control, for others there has been a steady accumulation of knowledge of partially protective antigens, now accelerating through the application of genomic technologies. Nevertheless, progress towards usable, commercially available vaccines has been limited by a number of factors. The number of highly effective antigens is still very small. Although some classes of antigen have been investigated in more detail than others, we have no systematic knowledge of what distinguishes an effective antigen. Much hope has been placed on the potential of multi-antigen mixtures to deliver the efficacy required of a successful vaccine but with little experimental evidence. The application of current knowledge across parasite and host species needs to be explored but little has been done. In most cases, the path to commercial delivery is uncertain. Although many constraints and challenges remain, the need for vaccines and our capacity to develop them can only increase.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aljamali, M. N., Bior, A. D., Sauer, J. R. and Essenberg, R. C. ( 2003). RNA interference in ticks: a study using histamine binding protein dsRNA in the female tick Amblyomma americanum. Insect Molecular Biology 12, 299305.CrossRefGoogle Scholar
Allingham, P. G., East, I. J., Kerlin, R. L. and Kemp, D. H. ( 1998). Digestion of host immunoglobulin and activity of midgut proteases in the buffalo fly Haematobia irritans exigua. Journal of Insect Physiology 44, 445450.CrossRefGoogle Scholar
Allingham, P. G., Kerlin, R. L., Tellam, R. L., Briscoe, S. J. and Standfast, H. A. ( 1992). Passage of host immunoglobulin across the mid-gut epithelium into the haemolymph of blood-fed buffalo flies Haematobia irritans exigua. Journal of Insect Physiology 38, 917.CrossRefGoogle Scholar
Almazán, C., Blas-Machado, V., Kocan, K. M., Yoshioka, J. H., Blouin, E. F., Mangold, A. J. and De La Fuente, J. ( 2005 a). Characterization of three Ixodes holocyclus cDNAs protective against tick infestations. Vaccine 23, 44034416.Google Scholar
Almazán, C., Kocan, K. M., Blouin, E. F. and De La Fuente, J. ( 2005 b). Vaccination with recombinant tick antigens for the control of Ixodes scapularis adult infestations. Vaccine 23, 52945298.Google Scholar
Almazán, C., Kocan, K. M., Bergman, D. K., Garcia-Garcia, J. C., Blouin, E. F. and De La Fuente, J. ( 2003 a). Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization. Vaccine 21, 14921501.Google Scholar
Almazán, C., Kocan, K. M., Bergman, D. K., Garcia-Garcia, J. C., Blouin, E. F. and De La Fuente, J. ( 2003 b). Characterization of genes transcribed in an Ixodes scapularis cell line that were identified by expression library immunization and analysis of expressed sequence tags. Gene Therapy and Molecular Biology 7, 4359.Google Scholar
Andreotti, R., Gomes, A., Malavazi-Piza, K. C., Sasaki, S. D., Sampaio, C. A. M. and Tanaka, A. S. ( 2002). BmTI antigens induce a bovine protective immune response against B. microplus tick. International Immunopharmacology 2, 557563.CrossRefGoogle Scholar
Andreotti, R., Sampaio, C. A. M., Gomes, A. and Tanaka, A. S. ( 1999). A serine proteinase inhibitor immunoprotection from B. microplus unfed larvae in calves. IV Seminario Internacional de Parasitologia Animal, 20–22 October, 1999, Puerto Vallarta, Jalisco, Mexico.
Ariel, N., Zvi, A., Makarova, K. S., Chitlaru, T., Elhanany, E., Velan, B., Cohen, S., Friedlander, A. M. and Shafferman, A. ( 2003). Genome-based bioinformatic selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infection and Immunity 71, 45634579.CrossRefGoogle Scholar
Bautista, C. R., Giles, I., Montenegro, N. and Figueroa, J. V. ( 2004). Immunization of bovines with concealed antigens from Haematobia irritans. Annals of the New York Academy of Sciences 1026, 284288.CrossRefGoogle Scholar
Bishop, R., Lambson, B., Wells, C., Pandit, P., Osaso, J., Nkonge, C., Morzaria, S., Musoke, A. and Nene, V. ( 2002). A cement protein of the tick Rhipicephalus appendiculatus, located in the secretory e cell granules of the type III salivary gland acini, induces strong antibody responses in cattle. International Journal for Parasitology 32, 833842.CrossRefGoogle Scholar
Bowles, V. M., Carnegie, P. R. and Sandeman, R. M. ( 1988). Characterization of proteolytic and collagenolytic enzymes from the larvae of Lucilia cuprina, the sheep blowfly. Australian Journal of Biological Sciences 41, 269278.CrossRefGoogle Scholar
Bowles, V. M., Meeusen, E. N. T., Young, A. R., Andrews, A. E., Nash, A. D. and Brandon, M. R. ( 1996). Vaccination of sheep against larvae of the sheep blowfly (Lucilia cuprina). Vaccine 14, 13471352.CrossRefGoogle Scholar
Calvo, E., Andersen, J., Francischetti, I. M., Del Capurro, M., Debianchi, A. G., James, A. A., Ribeiro, J. M. C. and Marinotti, O. ( 2004). The transcriptome of adult female Anopheles darlingi salivary glands. Insect Molecular Biology 13, 7388.CrossRefGoogle Scholar
Casu, R., Eisemann, C., Pearson, R., Riding, G., East, I., Donaldson, A., Cadogan, L. and Tellam, R. ( 1997). Antibody-mediated inhibition of the growth of larvae from an insect causing cutaneous myiasis in a mammalian host. Proceedings of the National Academy of Sciences, USA 94, 89398944.CrossRefGoogle Scholar
Casu, R. E., Eisemann, C. H., Vuocolo, T. and Tellam, R. L. ( 1996). The major excretory/secretory protease from Lucilia cuprina larvae is also a gut digestive protease. International Journal for Parasitology 26, 623628.CrossRefGoogle Scholar
Casu, R. E., Pearson, R. D., Jarmey, J. M., Cadogan, L. C., Riding, G. A. and Tellam, R. L. ( 1994). Excretory/secretory chymotrypsin from Lucilia cuprina: purification, enzymatic specificity and amino acid sequence deduced from mRNA. Insect Molecular Biology 3, 201211.CrossRefGoogle Scholar
Chabaudie, N., Villejoubert, C. and Boulard, C. ( 1991). The response of cattle vaccinated with hypodermin A to a natural infestation of Hypoderma bovis and Hypoderma lineatum. International Journal for Parasitology 21, 859862.CrossRefGoogle Scholar
Cobon, G. S. ( 1997). An anti-arthropod vaccine: TickGARD – a vaccine to prevent cattle tick infestations. In New Generation Vaccines ( ed. Levine, M. M., Woodrow, G. C., Kaper, J. B. and Cobon, G. S.), pp. 11451151. Marcel Dekker, Inc., New York, Basel, Hong Kong.
Colditz, I. G., Eisemann, C. H., Tellam, R. L., McClure, S. J., Mortimer, S. I. and Husband, A. J. ( 1996). Growth of Lucilia cuprina larvae following treatment of sheep divergently selected for fleece rot and fly strike with monoclonal antibodies to T lymphocyte subsets and interferon γ. International Journal for Parasitology 26, 775782.CrossRefGoogle Scholar
Colditz, I. G., Lax, J., Mortimer, S. I., Clarke, R. A. and Beh, K. J. ( 1994). Cellular inflammatory responses in skin of sheep selected for resistance or susceptibility to fleece rot and fly strike. Parasite Immunology 16, 289296.CrossRefGoogle Scholar
Cupp, M. S., Cupp, E. W., Navarre, C., Wisnewski, N., Brandt, K. S., Silver, G. M., Zhang, D. H. and Panangala, V. ( 2004). Evaluation of a recombinant salivary gland protein (thrombostasin) as a vaccine candidate to disrupt blood-feeding by horn flies. Vaccine 22, 22852297.CrossRefGoogle Scholar
Da Silva Vaz, I. Jr., Logullo, C., Sorgine, M., Velloso, F. F., Rosa, D. E., Lima, M. F., Gonzales, J. C., Masuda, H., Oliveira, P. L. and Masuda, A. ( 1998). Immunization of bovines with an aspartic proteinase precursor isolated from B. microplus eggs. Veterinary Immunology and Immunopathology 66, 331341.CrossRefGoogle Scholar
De La Fuente, J., Almazán, C., Blouin, E. F., Naranja, V. and Kocan, K. M. ( 2005). RNA interference screening in ticks for identification of protective antigens. Parasitology Research 96, 137141.CrossRefGoogle Scholar
East, I. J., Allingham, P. G., Bunch, R. J. and Matheson, J. ( 1995). Isolation and characterization of a trypsin-like enzyme from the buffalo fly, Haematobia irritans exigua. Medical and Veterinary Entomology 9, 120126.CrossRefGoogle Scholar
East, I. J., Fitzgerald, C. J., Pearson, R. D., Donaldson, R. A., Vuocolo, T., Cadogan, L. C., Tellam, R. L. and Eisemann, C. H. ( 1993). Lucilia cuprina: inhibition of larval growth induced by immunization of host sheep with extracts of larval peritrophic membrane. International Journal for Parasitology 23, 221229.CrossRefGoogle Scholar
Eisemann, C. H., Donaldson, R. A., Pearson, R. D., Cadogan, L. C., Vuocolo, T. and Tellam, R. L. ( 1994). Larvicidal activity of lectins on Lucilia cuprina: mechanism of action. Entomologia Experimentalis et Applicata 72, 110.CrossRefGoogle Scholar
Eisemann, C. H., Standfast, H. A., Tellam, R. L., East, I. J., Sandeman, R. M., Arundel, J. H. and Scheurmann, E. A. ( 1991). Vaccination of sheep against larvae of Lucilia cuprina. Immunological control of blowfly strike, pp. 7681. Australian Wool Corporation, Melbourne, Australia.
Eisemann, C., Wijffels, G. and Tellam, R. L. ( 2001). Secretion of the type 2 peritrophic matrix protein, peritrophin-15, from the cardia. Archives of Insect Biochemistry and Physiology 47, 7685.CrossRefGoogle Scholar
Elvin, C. M., Vuocolo, T., Pearson, R. D., East, I. J., Riding, G. A., Eisemann, C. H. and Tellam, R. L. ( 1996). Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina. cDNA and deduced amino acid sequences. Journal of Biological Chemistry 271, 89258935.Google Scholar
Ferreira, B. R., Szabó, M. J. P., Cavassani, K. A., Bechara, G. H. and Silva, J. S. ( 2003). Antigens from Rhipicephalus sanguineus ticks elicit potent cell-mediated immune responses in resistant but not in susceptible animals. Veterinary Parasitology 115, 3548.CrossRefGoogle Scholar
Francischetti, I., Mather, T. N. and Ribeiro, J. M. C. ( 2003). Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the salvia of the Lyme disease tick vector Ixodes scapularis. Biochemical and Biophysical Research Communications 305, 869875.CrossRefGoogle Scholar
Francischetti, I. M. B., Mather, T. N. and Ribeiro, J. M. C. ( 2005 a). Tick saliva is a potent inhibitor of endothelial cell proliferation and angiogenesis. Thrombosis and Haemostasis 94, 167174.Google Scholar
Francischetti, I. M. B., Pham, V. M., Mans, B. J., Andersen, J. F., Mather, T. N., Lane, R. S. and Ribeiro, J. M. C. ( 2005 b). The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari: Ixodidae). Insect Biochemistry and Molecular Biology 35, 11421161.Google Scholar
Francischetti, I. M. B., Valenzuela, J. G., Pham, V. M., Garfield, M. K. and Ribeiro, J. M. C. ( 2002). Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae. Journal of Experimental Biology 205, 24292451.Google Scholar
Fraser, C. M. and Rappuoli, R. ( 2005). Application of microbial genomic science to advanced therapeutics. Annual Review of Medicine 56, 459474.CrossRefGoogle Scholar
Gough, J. M. and Kemp, D. H. ( 1993). Localization of a low abundance membrane protein (Bm86) on the gut cells of the cattle tick B. microplus by immunological labelling. Journal of Parasitology 79, 900907.Google Scholar
Guerrero, P. D., Miller, R. J., Rousseau, M. E., Sunkara, S., Quackenbas, J., Lee, Y. and Nene, V. ( 2005). BmiGI! A database of cDNAs expressed in Boophilus microplus, the tropical/southern cattle tick. Insect Biochemistry and Molecular Biology 35, 585595.CrossRefGoogle Scholar
Guerrero, F. D., Nene, V. M., George, J. E., Barker, S. C. and Willadsen, P. ( 2006). Sequencing a new target genome: the Southern Cattle Tick, Boophilus microplus (Acari: Ixodidae) genome project. Journal of Medical Entomology 43, 916.CrossRefGoogle Scholar
Hill, C. A. and Wikel, S. K. ( 2005). The Ixodes scapularis Genome Project: an opportunity for advancing tick research. Trends in Parasitology 21, 151153.CrossRefGoogle Scholar
Huntley, J. F., Machell, J., Nisbet, A. J., Van Den Broek, A., Chua, K. Y., Cheong, N., Hales, B. J. and Thomas, W. R. ( 2004). Identification of tropomyosin, paramyosin and apolipophorin/vitellogenin as three major allergens of the sheep scab mite, Psoroptes ovis. Parasite Immunology 26, 335342.CrossRefGoogle Scholar
Imamura, S., Da Silva Vaz, I. Jr., Sugino, M., Ohashi, K. and Onuma, M. ( 2005). A serine protease inhibitor (serpin) from Haemaphysalis longicornis as an anti-tick vaccine. Vaccine 23, 13011311.CrossRefGoogle Scholar
Iwanga, I. S., Okada, M., Isawa, H., Morita, A., Yuda, M. and Chinzei, Y. ( 2003). Identification and characterization of novel salivary thrombin inhibitors from the Ixodidae tick, Haemaphysalis longicornis. European Journal of Biochemistry 270, 19261934.CrossRefGoogle Scholar
Jarmey, J. M., Riding, G. A., Pearson, R. D., McKenna, R. V. and Willadsen, P. ( 1995). Carboxydipeptidase from Boophilus microplus: A “concealed” antigen with similarity to angiotensin-converting enzyme. Insect Biochemistry and Molecular Biology 25, 969974.CrossRefGoogle Scholar
Jonsson, N. N., Matschoss, A. L., Pepper, P., Green, P. E., Albrecht, M. S., Hunterford, J. and Ansell, J. ( 2000). Evaluation of TickGARD(PLUS). a novel vaccine against B. microplus, in lactating Holstein-Friesian cows. Veterinary Parasitology 88, 275285.Google Scholar
Karim, S., Miller, N. J., Valenzuela, J., Sauer, J. R. and Mather, T. N. ( 2005). RNAi-mediated gene silencing to assess the role of synaptobrevin and crystatin in tick blood feeding. Biochemical and Biophysical Research Communications 334, 13361342.CrossRefGoogle Scholar
Kato, N., Iwanga, S., Okayama, T., Isawa, H., Yuda, M. and Chinzei, Y. ( 2005). Identification and characterization of the plasma kallikrein-kinin system inhibitor, haemaphysalin, from the hard tick Haemaphysalia longicornis. Thrombosis and Haemostasis 93, 359367.Google Scholar
Labuda, M. and Nuttall, P. A. ( 2004). Tick-borne viruses. Parasitology 129 (Suppl.), S221S245.CrossRefGoogle Scholar
Labuda, M., Trimnell, A. R., Lickova, M., Kazimirova, M., Slovak, M. and Nuttall, P. A. ( 2002). Recombinant tick salivary antigens (64TRP) as a TRANSBLOK vaccine against tick-borne encephalitis virus. Abstracts 4th International Conference on Ticks and Tick-Borne Pathogens, Banff, Canada p. 51.
Lambson, B., Nene, V., Obura, M., Shah, T., Pandit, P., Ole-Moiyoi, O., Delroux, K., Welburn, S., Skilton, R., De Villiers, E. and Bishop, R. ( 2005). Identification of candidate sialome components expressed in ixodid tick salivary glands using secretion signal complementation in mammalian cells. Insect Molecular Biology 14, 403414.CrossRefGoogle Scholar
Lee, R. P., Jackson, L. A. and Opdebeeck, J. P. ( 1991). Immune responses of cattle to biochemically modified antigens from the midgut of the cattle tick, B. microplus. Parasite Immunology 13, 661672.CrossRefGoogle Scholar
Lee, R. P. and Opdebeeck, J. P. ( 1991). Isolation of protective antigens from the gut of B. microplus using monoclonal antibodies. Immunology 72, 121126.Google Scholar
Mans, B. J. and Neitz, A. W. H. ( 2004). Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochemistry and Molecular Biology 34, 117.CrossRefGoogle Scholar
Miyoshi, T., Tsuji, N., Islam, K. M., Kamio, T. and Fujisaki, K. ( 2004 a). Enzymatic characterization of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis. Journal of Veterinary Medical Science 66, 11951198.Google Scholar
Miyoshi, T., Tsuji, N., Islam, K. M., Kamio, T. and Fujisaki, K. ( 2004 b). Cloning and molecular characterization of a cubilin-related serine proteinase from the hard tick Haemaphysalis longicornis. Insect Biochemistry and Molecular Biology 34, 799808.Google Scholar
Moiré, N., Bigot, Y., Periquet, G. and Boulard, C. ( 1994). Sequencing and gene expression of hypodermins A, B, C, in larval stages of Hypoderma lineatum. Molecular and Biochemical Parasitology 66, 233240.CrossRefGoogle Scholar
Muharsini, S., Sukarsih, S., Riding, G., Partoutomo, S., Hamilton, S., Willadsen, P. and Wijffels, G. ( 2000). Identification and characterization of the excreted/secreted serine proteases of larvae of the Old World Screwworm Fly Chrysomya bezziana. International Journal for Parasitology 30, 705714.CrossRefGoogle Scholar
Mulenga, A., Onuma, M. and Sugimoto, C. ( 2003). Three serine proteinases from midguts of the hard tick Rhipicephalus appendiculatus; cDNA cloning and preliminary characterization. Experimental and Applied Acarology 29, 151164.CrossRefGoogle Scholar
Mulenga, A., Sugimoto, C., Ingram, G., Ohashi, K. and Onuma, M. ( 1999 b). Molecular cloning of two Haemaphysalis longicornis cathepsin L-like proteinase genes. Journal of Veterinary Medical Science 61, 497502.Google Scholar
Mulenga, A., Sugino, M., Nakajima, M., Sugimoto, C. and Onuma, M. ( 2001). Tick-encoded serine proteinase inhibitors (serpins); potential target antigens for tick vaccine development. Journal of Veterinary Medical Science 63, 10631069.CrossRefGoogle Scholar
Mulenga, A., Sugimoto, C., Sako, Y., Ohashi, K., Musoke, A., Mozaria, S. and Onuma, M. ( 1999 a). Molecular characterization of a Haemaphysalis longicornis tick salivary gland-associated 29-kilodalton protein and its effect as a vaccine against tick infestation in rabbits. Infection and Immunity 67, 16521658.Google Scholar
Mulenga, A., Tsuda, C., Sugimoto, C. and Onuma, M. ( 2002). Blood meal acquisition by ticks; molecular advances and implications for vaccine development. Japanese Journal of Veterinary Research 49, 261272.Google Scholar
Nakajima, C., Vaz, I. D., Imamura, S., Konnai, S., Ohashi, K. and Onuma, M. ( 2005). Random sequencing of cDNA library derived from partially-fed adult female Haemaphysalis longicornis salivary gland. Journal of Veterinary Medical Science 67, 11271131.CrossRefGoogle Scholar
Narasimhan, S., Montgomery, R. R., Deponte, K., Tschudi, C., Marcantonio, N., Anderson, J. F., Sauer, J. R., Cappello, M., Kantor, F. S. and Fikrig, E. ( 2004). Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proceedings of the National Academy of Sciences, USA 101, 11411146.CrossRefGoogle Scholar
Nene, V., Lee, D., Kang'a, S., Skilton, R., Trushar Shah, T. R., De Villiers, E., Mwaura, S., Taylor, D., Quackenbush, J. and Bishop, R. ( 2004). Genes transcribed in the salivary glands of female Rhipicephalus appendiculatus ticks infected with Theileria parva. Insect Biochemistry and Molecular Biology 34, 11171128.CrossRefGoogle Scholar
Nene, V., Lee, D., Quackenbush, J., Skilton, R., Mwaura, S., Gardner, M. J. and Bishop, R. ( 2002). AvGI, an index of genes transcribed in the salivary glands of the ixodid tick Amblyomma variegatum. International Journal for Parasitology 32, 14471456.CrossRefGoogle Scholar
Nuttall, P. A. and Labuda, M. ( 2004). Tick-host interactions: saliva activated transmission. Parasitology 129 (Suppl.), S177S189.CrossRefGoogle Scholar
Otranto, D. ( 2001). The immunology of myiasis: parasite survival and host defence strategies. Trends in Parasitology 17, 176182.CrossRefGoogle Scholar
Otranto, D. and Stevens, J. R. ( 2002). Molecular approaches to the study of myiasis-causing larvae. International Journal for Parasitology 32, 13451360.CrossRefGoogle Scholar
Palmer, M. J., Bantle, J. A., Guo, X. and Fargo, W. S. ( 1994). Genome size and organization in the ixodid tick Amblyomma americanum. Insect Molecular Biology 3, 5762.CrossRefGoogle Scholar
Pettit, D., Smith, W. D., Richardson, J. and Munn, E. A. ( 2000). Localization and characterization of ovine immunoglobulin within the sheep scab mite, Psoroptes ovis. Veterinary Parasitology 89, 231239.CrossRefGoogle Scholar
Pipano, E., Alekceev, E., Galker, F., Fish, L., Samish, M. and Shkap, V. ( 2003). Immunity against Boophilus annulatus induced by the Bm86 (Tick-GARD) vaccine. Experimental and Applied Acarology 29, 141149.CrossRefGoogle Scholar
Pruett, J. H. ( 1999 a). Immunological control of arthropod ectoparasites – a review. International Journal for Parasitology 29, 2532.Google Scholar
Pruett, J. H. ( 1999 b). Identification and purification of a 16-kDa allergen from Psoroptes ovis (Acarina: Psoroptidae). Journal of Medical Entomology 5, 544550.Google Scholar
Pruett, J. H. ( 2002). Immunological intervention for the control of ectoparasites of livestock – A Review. Journal of Veterinary Parasitology 16, 110.Google Scholar
Pruett, J. H., Fisher, W. F. and Temeyer, K. B. ( 1989). Evaluation of purified proteins of Hypoderma lineatum as candidate immunogens for a vaccine against bovine hypodermiasis. Southwestern Entomologist 14, 363373.Google Scholar
Pruett, J. H. and Kunz, S. E. ( 1996). Development of resistance to Hypoderma lineatum (Diptera: Oestridae) within a cattle herd. Journal of Medical Entomology 33, 4952.CrossRefGoogle Scholar
Pruett, J. H., Temeyer, K. B., Fisher, W. F., Beetham, P. K. and Kunz, S. E. ( 1998). Evaluation of natural Psoroptes ovis (Acarina: Psoroptidae) soluble proteins as candidate vaccine immunogens. Journal of Medical Entomology 35, 861871.CrossRefGoogle Scholar
Rand, K. N., Moore, T., Sriskantha, A., Spring, K., Tellam, R., Willadsen, P. and Cobon, G. S. ( 1989). Cloning and expression of a protective antigen from the cattle tick B. microplus. Proceedings of the National Academy of Sciences, USA 86, 96579661.CrossRefGoogle Scholar
Reed, B. J., Chandler, D. S. and Sandeman, R. M. ( 1999). Aminopeptidases as potential targets for the control of the Australian sheep blowfly, Lucilia cuprina. International Journal for Parasitology 29, 839850.CrossRefGoogle Scholar
Ribeiro, J. M. C., Andersen, J., Silva-Neto, M. A. C., Pham, V. M., Garfield, M. K. and Valenzuela, J. G. ( 2004 b). Exploring the sialome of the blood-sucking bug Rhodnius prolixus. Insect Biochemistry and Molecular Biology 34, 6179.Google Scholar
Ribeiro, J. M. C., Charlab, R., Pham, V. M., Garfield, M. and Valenzuela, J. G. ( 2004 a). An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus. Insect Biochemistry and Molecular Biology 34, 543563.Google Scholar
Ribeiro, J. M. C. and Francischetti, I. M. B. ( 2003). Role of arthropod saliva in blood feeding: Sialome and post-sialome perspectives. Annual Review of Entomology 48, 7388.CrossRefGoogle Scholar
Riding, G. A., Jarmey, J., McKenna, R. V., Pearson, R., Cobon, G. S. and Willadsen, P. ( 1994). A protective “concealed” antigen from Boophilus microplus: purification, localization and possible function. Journal of Immunology 153, 51585166.Google Scholar
Riding, G., Muharsini, S. R. I., Pearson, R., Sukarsih, Satria, E., Wijffels, G. and Willadsen, P. ( 2000). Fractionation, identification and vaccination efficacy of native antigens from the screwworm fly, Chrysomya bezziana. Jurnal Ilmu Ternak Dan Veteriner, Special Edition, Vol. 5, 150159.Google Scholar
Ross, B. C., Czajkowski, L., Hocking, D., Margetts, M., Webb, E., Rothel, L., Patterson, M., Agius, C., Camuglia, S., Reynolds, E., Littlejohn, T., Gaeta, B., Ng, A., Kuczek, E. S., Mattick, J. S., Gearing, D. and Barr, I. G. ( 2001). Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine 19, 41354142.CrossRefGoogle Scholar
Sandeman, R. M., Bowles, V. M., Stacey, I. N. and Carnegie, P. R. ( 1986). Acquired resistance in sheep to infection with larvae of the blowfly, Lucilia cuprina. International Journal for Parasitology 16, 6975.CrossRefGoogle Scholar
Sandeman, R. M., Chandler, R. A., Bowles, V. M., Sandeman, R. M., Arundel, J. H. and Scheurmann, E. A. ( 1991). Protease activities in blowfly larval products. Immunological control of blowfly strike, pp. 98104. Australian Wool Corporation, Melbourne, Australia.Google Scholar
Sandeman, R. M., Feehan, J. P., Chandler, R. A. and Bowles, V. M. ( 1990). Tryptic and chymotryptic proteases released by larvae of the blowfly, Lucilia cuprina. International Journal for Parasitology 20, 10191023.CrossRefGoogle Scholar
Schorderet, S., Pearson, R. D., Vuocolo, T., Eisemann, C., Riding, G. A. and Tellam, R. L. ( 1998). cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, ‘peritrophin-48’, from the larvae of Lucilia cuprina. Insect Biochemistry and Molecular Biology 28, 99111.CrossRefGoogle Scholar
Seixas, A., Dos Santos, P. C., Velloso, F. F., Da Silva Vaz, I. Jr., Masuda, A., Horn, F. and Termignoni, C. ( 2003). A Boophilus microplus vitellin-degrading cysteine endopeptidase. Parasitology 126, 155163.CrossRefGoogle Scholar
Smith, W. D. and Pettit, D. M. ( 2004). Immunization against sheep scab: preliminary identification of fractions of Psoroptes ovis which confer protective effects. Parasite Immunology 26, 307314.CrossRefGoogle Scholar
Smith, W. D., Van Den Broek, A., Huntley, J., Pettit, D., Machell, J., Miller, H. R. P., Bates, P. and Taylor, M. ( 2001). Approaches to vaccines for Psoroptes ovis (sheep scab). Research in Veterinary Science 70, 8791.CrossRefGoogle Scholar
Soares, C. A. G., Lima, C. M. R., Dolan, M. C., Piesman, J., Beard, C. B. and Zeidner, N. S. ( 2005). Capillary feeding of specific dsRNA induces silencing of the isac gene in nymphal Ixodes scapularis ticks. Insect Molecular Biology 14, 443452.CrossRefGoogle Scholar
Sugino, M., Imamura, S., Mulenga, A., Nakajima, M., Tsuda, A., Ohashi, K. and Onuma, M. ( 2003). A serine proteinase inhibitor (serpin) from the ixodid tick Haemaphysalis longicornis; cloning, and preliminary assessment of its suitability as a candidate for a tick vaccine. Vaccine 21, 28442851.CrossRefGoogle Scholar
Sukarsih, Partoutomo, S., Satria, E., Wijffels, G., Riding, G., Eisemann, C. and Willadsen, P. ( 2000 a). Vaccination against the Old World Screwworm Fly (Chrysomya bezziana). Parasite Immunology 22, 545552.Google Scholar
Sukarsih, Partoutomo, S., Wijffels, G. and Willadsen, P. ( 2000 b). Vaccination trials in sheep against Chrysomya bezziana larvae using the recombinant peritrophin antigens Cb15, Cb42 and Cb48. Jurnal Ilmu Ternak Dan Veterinar, Special Edition, Vol. 5, 192196.Google Scholar
Szabó, M. P. J., Aoki, V. L., Sanches, F. P. S., Aquino, L. P. T. C. T., Garcia, M. V., Machado, R. Z. and Bechara, G. H. ( 2003). Antibody and blood leukocyte response in Rhipicephalus sanguineus (Latreille, 1806) tick-infested dogs and guinea pigs. Veterinary Parasitology 115, 4959.CrossRefGoogle Scholar
Tanaka, A. S., Andreotti, R., Gomes, A., Torquato, R. J. S., Sampaio, M. U. and Sampaio, C. A. M. ( 1999). A double headed serine proteinase inhibitor – human plasma kallikrein and elastase inhibitor – from B. microplus larvae. Immunopharmacology 45, 171177.CrossRefGoogle Scholar
Tellam, R. L. and Bowles, W. M. ( 1997). Control of blowfly strike in sheep: current strategies and future prospects. International Journal for Parasitology 27, 261273.CrossRefGoogle Scholar
Tellam, R. L. and Eisemann, C. H. ( 1998). Inhibition of growth of Lucilia cuprina larvae using serum from sheep vaccinated with first-instar larval antigens. International Journal for Parasitology 28, 439450.CrossRefGoogle Scholar
Tellam, R. L., Eisemann, C., Casu, R. and Pearson, R. ( 2000). The intrinsic peritrophic matrix protein peritrophin-95 from larvae of Lucilia cuprina is synthesised in the cardia and regurgitated or excreted as a highly immunogenic protein. Insect Biochemistry and Molecular Biology 30, 917.CrossRefGoogle Scholar
Tellam, R. L., Eisemann, C. H. and Pearson, R. D. ( 1994). Vaccination of sheep with purified serine proteases from the secretory and excretory material of Lucilia cuprina larvae. International Journal for Parasitology 24, 757764.CrossRefGoogle Scholar
Tellam, R. L., Eisemann, C. H., Vuocolo, T., Casu, R., Jarmey, J., Bowles, V. and Pearson, R. ( 2001). Role of oligosaccharides in the immune response of sheep vaccinated with Lucilia cuprina larval glycoprotein, peritrophin-95. International Journal for Parasitology 31, 798809.CrossRefGoogle Scholar
Tellam, R. L., Smith, D., Kemp, D. H. and Willadsen, P. ( 1992). Vaccination against ticks. Chapter 12 In Animal Parasite Control Utilizing Biotechnology ( ed. Yong W. K.), pp. 303331. CRC Press, Boca Raton.
Tellam, R. L., Vuocolo, T., Eisemann, C., Briscoe, S., Riding, G., Elvin, C. and Pearson, R. ( 2003). Identification of an immuno-protective mucin-like protein, peritrophin-55, from the peritrophic matrix of Lucilia cuprina larvae. Insect Biochemistry and Molecular Biology 33, 239252.CrossRefGoogle Scholar
Tellam, R. L., Willadsen, P. and Wijffels, G. ( 1999). Peritrophic matrix proteins. Insect Molecular Biology 29, 87101.CrossRefGoogle Scholar
Temeyer, K. B., Carmen Soileau, L. and Pruett, J. H. ( 2002). Cloning and Sequence Analysis of a cDNA Encoding Pso o II, a Mite Group II Allergen of the Sheep Scab Mite (Acari: Psoroptidae). Journal of Medical Entomology 39, 384391.CrossRefGoogle Scholar
Trimnell, A. R., Davies, G. M., Lissina, O., Hails, R. S. and Nuttall, P. A. ( 2005). A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine 23, 43294341.CrossRefGoogle Scholar
Trimnell, A. R., Hails, R. S. and Nuttall, P. A. ( 2002). Dual action ectoparasite vaccine targeting ‘exposed’ and ‘concealed’ antigens. Vaccine 20, 33603568.CrossRefGoogle Scholar
Tsuda, A., Mulenga, A., Sugimoto, C., Nakajima, M., Ohashi, K. and Onuma, M. ( 2001). cDNA cloning, characterization and vaccine effect analysis of Haemaphysalis longicornis tick saliva proteins. Vaccine 19, 42874296.CrossRefGoogle Scholar
Ullmann, A. J., Lima, C. M. R., Guerrero, F. D., Piesman, J. and Black IV, W. C. ( 2005). Genome size and organization in the blacklegged tick, Ixodes scapularis and the Southern cattle tick, Boophilus microplus. Insect Molecular Biology 14, 217222.CrossRefGoogle Scholar
Untalan, P. M., Guerrero, F. D., Haines, L. R. and Pearson, T. W. ( 2005). Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus. Insect Biochemistry and Molecular Biology 35, 141151.CrossRefGoogle Scholar
Valenzuela, J. G. ( 2004). Exploring tick saliva: from biochemistry to ‘sialomes’ and functional genomics. Parasitology 129 (Suppl.), S83S94.CrossRefGoogle Scholar
Valenzuela, J. G., Belkaid, Y., Garfield, M. K., Mendez, S., Kamhawi, S., Rowton, E. D., Sacks, D. L. and Ribeiro, J. M. C. ( 2001). Toward a defined anti-Leishmania vaccine targeting vector antigens: Characterization of a protective salivary protein. Journal of Experimental Medicine 194, 331342.CrossRefGoogle Scholar
Valenzuela, J. G., Charlab, R., Mather, T. N. and Ribeiro, J. M. C. ( 2000). Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. Journal of Biological Chemistry 275, 1871718723.CrossRefGoogle Scholar
Valenzuela, J. G., Francischetti, I. M. B., Pham, V. M., Garfield, M. K., Mather, T. N. and Ribeiro, J. M. C. ( 2002 a). Exploring the sialome of the tick Ixodes scapularis. Journal of Experimental Biology 205, 28432864.Google Scholar
Valenzuela, J. G., Francischetti, I. M. B., Pham, V. M., Garfield, M. K. and Ribeiro, J. M. C. ( 2003). Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochemistry and Molecular Biology 33, 717732.CrossRefGoogle Scholar
Valenzuela, J. G., Pham, V. M., Garfield, M. K., Francischetti, I. M. B. and Ribeiro, J. M. C. ( 2002 b). Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochemistry and Molecular Biology 32, 11011122.Google Scholar
Valle, M. R., Mèndez, L., Valdez, M., Redondo, M., Espinosa, C. M., Vargas, M., Cruz, R. L., Barrios, H. P., Seoane, G., Ramirez, E. S., Boue, O., Vigil, J. L., Machado, H., Nordelo, C. B. and Pińeiro, M. J. ( 2004). Integrated control of Boophilus microplus stocks in Cuba based on vaccination with the anti-tick vaccine Gavac™. Experimental and Applied Acarology 34, 375382.CrossRefGoogle Scholar
Van Den Broek, A. H. M., Else, R. W., Huntley, J. F., Machell, J., Taylor, M. A. and Miller, H. R. P. ( 2004). Early innate and longer-term adaptive cutaneous immunoinflammatory responses during primary infestation with the sheep scab mite, Psoroptes ovis. Journal of Comparative Pathology 131, 318329.CrossRefGoogle Scholar
Vuocolo, T., Eisemann, C. H., Pearson, R. D., Willadsen, P. and Tellam, R. L. ( 2001). Identification and molecular characterization of a peritrophin gene, peritrophin-48, from the myiasis fly Chrysomya bezziana. Insect Biochemistry and Molecular Biology 31, 919932.CrossRefGoogle Scholar
Weiss, B. L. and Kaufman, W. R. ( 2004). Two feeding-induced proteins from the male gonad trigger engorgement of the female tick Amblyomma hebraeum. Proceedings of the National Academy of Sciences, USA 101, 58745879.CrossRefGoogle Scholar
Wijffels, G., Hughes, S., Gough, J., Allen, J., Don, A., Marshall, K., Kay, B. and Kemp, D. ( 1999). Peritrophins of adult dipteran ectoparasites and their evaluation as vaccine antigens. International Journal for Parasitology 29, 13631377.CrossRefGoogle Scholar
Wijffels, G., Eisemann, C., Riding, G., Pearson, R., Jones, A., Willadsen, P. and Tellam, R. ( 2001). A novel family of chitin-binding proteins from insect type 2 peritrophic matrix: cDNA sequences, chitin binding activity, and cellular localization. Journal of Biological Chemistry 276, 1552715536.CrossRefGoogle Scholar
Wikel, S. ( 1999). Tick modulation of host immunity: an important factor in pathogen transmission. International Journal for Parasitology 29, 851859.CrossRefGoogle Scholar
Willadsen, P. ( 1980). Immunity to ticks. Advances in Parasitology 18, 293313.CrossRefGoogle Scholar
Willadsen, P. ( 2004). Anti-tick Vaccines in “Ticks, Disease and Control” Parasitology (Suppl.) 129, S367S388.Google Scholar
Willadsen, P. and Kemp, D. H. ( 1988). Vaccination with ‘concealed’ antigens for tick control. Parasitology Today 4, 196198.CrossRefGoogle Scholar
Willadsen, P., Bird, P. E., Cobon, G. S. and Hungerford, J. ( 1995). Commercialization of a recombinant vaccine against Boophilus microplus. Parasitology 110 (Suppl.), S43S50.Google Scholar
Willadsen, P., Eisemann, C. H. and Tellam, R. L. ( 1993). ‘Concealed’ antigens: expanding the range of immunological targets. Parasitology Today 9, 132135.CrossRefGoogle Scholar
Willadsen, P. and McKenna, R. V. ( 1991). Vaccination with ‘concealed’ antigens: myth or reality? Parasite Immunology 13, 605616.Google Scholar
Willadsen, P., McKenna, R. V. and Riding, G. A. ( 1988). Isolation from the cattle tick, Boophilus microplus, of antigenic material capable of eliciting a protective immunological response in the bovine host. International Journal for Parasitology 18, 183189.CrossRefGoogle Scholar
Willadsen, P., Riding, G. A., McKenna, R. V., Kemp, D. H., Tellam, R. L., Nielsen, J. N., Lahnstein, J., Cobon, G. S. and Gough, J. M. ( 1989). Immunologic control of a parasitic arthropod. Identification of a protective antigen from B. microplus. Journal of Immunology 143, 13461351.Google Scholar
Willadsen, P., Smith, D., Cobon, G. and McKenna, R. V. ( 1996). Comparative vaccination of cattle against Boophilus microplus with recombinant antigen Bm86 alone or in combination with recombinant Bm91. Parasite Immunology 18, 241246.CrossRefGoogle Scholar
Wizemann, T. M., Heinrichs, J. H., Adamou, J. E., Erwin, A. L., Kunsch, C., Choi, G. H., Barash, S. C., Rosen, C. A., Masure, H. R., Tuomanen, E., Gayle, A., Brewah, Y. A., Walsh, W., Barren, P., Lathigra, R., Hanson, M., Langermann, S., Johnson, S. and Koenig, S. ( 2001). Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infection and Immunity 69, 15931598.CrossRefGoogle Scholar
Xu, Y., Bruno, J. F. and Luft, B. J. ( 2005). Identification of novel tick salivary gland proteins for vaccine development. Biochemical and Biophysical Research Communications 326, 901904.CrossRefGoogle Scholar
You, M.-J. ( 2005). Immunization of mice with recombinant P27/30 protein confers protection against hard tick Haemaphysalis longicornis (Acari: Ixodidae) infestation. Journal of Veterinary Science 61, 4751.Google Scholar
Young, A. R., Meeusen, E. N. T. and Bowles, V. M. ( 1996). Characterization of ES products involved in wound initiation by Lucilia cuprina larvae. International Journal for Parasitology 26, 245252.CrossRefGoogle Scholar
Young, A. R., Mancuso, N., Meeusen, E. N. T. and Bowles, V. M. ( 2000). Characterization of proteases involved in egg hatching of the sheep blowfly, Lucilia cuprina. International Journal for Parasitology 30, 925932.CrossRefGoogle Scholar
Young, A. R., Meeusen, E. N. T., Mancuso, N. and Bowles, V. M. ( 1997). Proteases released by Lucilia cuprina during egg hatch. Insect Biochemistry and Molecular Biology 27, 10171026.CrossRefGoogle Scholar