Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-21T23:57:02.520Z Has data issue: false hasContentIssue false

Tumour necrosis factor-α and macrophages in Plasmodium berghei-induced cerebral malaria

Published online by Cambridge University Press:  06 April 2009

J. H. A. J. Curfs
Affiliation:
Department of Medical Microbiology, Catholic University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
C. C. Hermsen
Affiliation:
Department of Medical Microbiology, Catholic University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
P. Kremsner
Affiliation:
Landesinstitut für Tropenmedizin, Berlin, Germany
S. Neifer
Affiliation:
Landesinstitut für Tropenmedizin, Berlin, Germany
J. H. E. Th. Meuwissen
Affiliation:
Department of Medical Microbiology, Catholic University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
N. Van Rooyen
Affiliation:
Department of Histology, Free University, Amsterdam
W. M. C. Eling
Affiliation:
Department of Medical Microbiology, Catholic University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands

Summary

The effect of tumour necrosis factor-α on malaria-infected mice was studied. C57B1/6J mice infected with Plasmodium berghei K173 exhibited an increased sensitivity to exogenous TNF. Injection of 15 μg TNF was lethal to some of the animals when given 5–7 days after infection, while when given later on in the infection (i.e. days 8–10) amounts as low as 2·5 μg TNF appeared to be lethal in all mice. The pathology in infected mice treated with TNF resembled that found in the brains of infected mice dying with cerebral malaria. Infected mice treated with TNF, however, also developed severe pathological changes in other organs. On the contrary, treatment with sublethal amounts of TNF (1·0 μg or less) given on days 8 and 9 after infection, protected mice against the development of cerebral malaria. In addition, infected mice exhibited an enhanced sensitivity for treatment with lipopolysaccharide (LPS). Sublethal amounts of LPS, however, did not prevent mortality as in TNF-treated mice (LPS-treated mice died at about the same time as infected mice that developed cerebral malaria), but no cerebral haemorrhages were found in the majority of LPS treated, infected animals. Treatment with dexamethasone during infection protected mice against the development of cerebral malaria, but did not suppress their increased sensitivity to exogenous TNF. Treatment of mice with liposome-encapsulated dichloromethylene diphosphonate (lip-Cl2MDP), used to eliminate macrophages (an important source of TNF), prevented the development of cerebral malaria, but only when given before day 5 of infection. Mice protected by treatment with lip Cl2MDP, however, remained sensitive for LPS on the eighth day of infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beutler, B., Kronchin, N., Milsark, I. W., Luedke, D. & Cerami, A. (1986). Control of cachectin (tumour necrosis factor) synthesis: Mechanisms of endotoxin resistance. Science 232, 977–80.CrossRefGoogle ScholarPubMed
Bevilacqua, M. P., Stengelin, S., Gimbrone, M. A. Jr & Seed, B. (1989). Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243, 1160–5.CrossRefGoogle ScholarPubMed
Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N. & Williamson, B. (1975). An endotoxin-induced serum factor that causes necrosis of tumors. Proceedings of the National Academy of Sciences, USA 72, 3666–70.CrossRefGoogle ScholarPubMed
Clark, I. A. (1987 a). Monokines and lymphokines in malarial pathology. Annals of Tropical Medicine and Parasitology 81, 577–85.CrossRefGoogle ScholarPubMed
Clark, I. A. (1987 b). Does endotoxin cause both the disease and parasite death in acute malaria and babesiosis? Lancet 2, 75–7.Google Scholar
Clark, I. A., Cowden, W. B. & Butcher, G. A. (1990). TNF and inhibition of growth of Plasmodium falciparum. Immunology Letters 25, 175–8.CrossRefGoogle ScholarPubMed
Clark, I. A., Cowden, W. B., Butcher, G. A. & Hunt, N. H. (1987 a). Possible roles of tumour necrosis factor in the pathology of malaria. American Journal of Pathology 129, 192–9.Google ScholarPubMed
Clark, I. A., Hunt, N. H., Butcher, G. A. & Cowden, W. B. (1987 b). Inhibition of murine malaria (Plasmodium chabaudi) in vivo by recombinant interferon-γ or tumour necrosis factor, and its enhancement by butylated hydroxyanisole. Journal of Immunology 139, 3493–6.CrossRefGoogle ScholarPubMed
Clark, I. A., Ilschner, S., MacMicking, J. D. & Cowden, W. B. (1990). TNF and Plasmodium berghei ANKA-induced cerebral malaria. Immunology Letters 25, 195–8.CrossRefGoogle ScholarPubMed
Clark, I. A., MacMicking, J. D., Gray, J. K., Rockett, K. A. & Cowden, W. B. (1992). Malaria mimicry with tumour necrosis factor: contrasts between species of murine malaria and Plasmodium falciparum. American Journal of Pathology 140, 325–36.Google ScholarPubMed
Curfs, J. H. A. J., Schetters, T. P. M., Hermsen, C. C., Jerusalem, C. R., Van Zon, A. A. J. C. & Eling, W. M. C. (1989). Immunological aspects of cerebral lesions in murine malaria. Clinical and Experimental Immunology 75, 136–40.Google ScholarPubMed
Curfs, J. H. A. J., Van Der Meer, J. W. M., Sauerwin, R. W. & Eling, W. M. C. (1990). Low dosages of interleukin 1 protect mice against lethal cerebral malaria. Journal of Experimental Medicine 172, 1287–91.CrossRefGoogle ScholarPubMed
Del Guidice, G., Grau, G. E. & Lambert, P.-H. (1988). Host responsiveness to malaria epitopes and immunopathology. In Malaria Immunology (ed. Pearlmann, P. & Wigzell, H.), pp. 288330, Basel: Karger.Google Scholar
Dinarello, C. A., Cannon, J. G., Wolff, S. M., Bernheim, H. A., Beutler, B., Cerami, A., Figari, I. S., Palladino, A. Jr & O'connor, J. V. (1986). Tumour necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin-1. Journal of Experimental Medicine 163, 1433–50.CrossRefGoogle ScholarPubMed
Eling, W. M. C. (1980). Role of the spleen in morbidity and morality of a Plasmodium berghei infection in mice. Infection and Immunity 30, 634–40.CrossRefGoogle Scholar
Eling, W. M. C., Van Zon, A. A. J. C. & Jerusalem, C. R. (1977). The course of a Plasmodium berghei infection in six different mouse strains. Zeitschrift für Parasitenkunde 54, 2945.CrossRefGoogle ScholarPubMed
Franz, D. R., Lim, T. S., Baze, W. B., Arimbalam, S., Lee, M. & Lewis, G. E. (1988). Pathologic activity of Plasmodium berghei prevented but not reversed by dexamethasone. American Journal of Tropical Medicine and Hygiene 38, 249–54.CrossRefGoogle Scholar
Gifford, G. E. & Lohmann-Matthes, M.-L. (1987). Gamma-interferon priming of mouse and human macrophages for induction of tumour necrosis factor production by bacterial lipopolysaccharide. Journal of the National Cancer Institute 78, 121–4.CrossRefGoogle ScholarPubMed
Grau, G. E., Bieler, G., Pointaire, P., De Kossodo, S., Tacchini-Cotier, F., Vassalli, P., Piguet, P.-F. & Lambert, P.-H. (1990). Significance of cytokine production and adhesion molecules in malarial immunopathology. Immunology Letters 25, 189–94.CrossRefGoogle ScholarPubMed
Grau, G. E., Fajardo, L. F., Piguet, P.-F., Allet, B., Lambert, P.-H. & Vassalli, P. (1987). Tumour necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 237, 1210–12.CrossRefGoogle ScholarPubMed
Grau, G. E., Heremans, H., Piguet, P.-F., Pointaire, P., Lambert, P.-H., Billiau, A. & Vassalli, P. (1989 b). Monoclonal antibody against interferon-γ can prevent experimental cerebral malaria and its associated overproduction of tumour necrosis factor. Proceedings of the National Academy of Sciences, USA 86, 5572–4.CrossRefGoogle Scholar
Grau, G. E., Kindler, V., Piguet, P.-F., Lambert, P.-H. & Vassalli, P. (1988). Prevention of experimental cerebral malaria by anticytokine antibodies. Journal of Experimental Medicine 168, 1499–504.CrossRefGoogle ScholarPubMed
Grau, G. E., Piguet, P.-F., Engers, H. D., Louis, J. A., Vassalli, P. & Lambert, P-H. (1986). L3T4 + T-lymphocytes play a major role in the pathogenesis of murine cerebral malaria. Journal of Immunology 137, 2348–54.CrossRefGoogle Scholar
Grau, G. E., Piguet, P-F., Vassalli, P. & Lambert, P.-H. (1989 a). Involvement of tumour necrosis factor and other cytokines in immune-mediated vascular pathology. International Archives of Allergy and Applied Immunology 88, 34–9.CrossRefGoogle ScholarPubMed
Groeneveld, P. H. P., Claassen, E., Kuper, C. F. & Van Roijen, N. (1988). The role of macrophages in LPS-induced lethality and tissue injury. Immunology 63, 521–7.Google ScholarPubMed
Kern, P., Hemmer, C. J., Van Damme, C., Gruss, H.-J. & Dietrich, M. (1989). Elevated tumour necrosis factor alpha and interleukin-6 serum levels as markers for complicated Plasmodium falciparum malaria. American Journal of Medicine 87, 139–43.CrossRefGoogle ScholarPubMed
Kettelhut, I. C., Fiers, W. & Goldberg, A. L. (1987). The toxic effects of tumour necrosis factor in vivo and their prevention by cyclooxygenase inhibitors. Proceedings of the National Academy of Sciences, USA 84, 4273–7.CrossRefGoogle ScholarPubMed
Kinkhabwalla, M., Sehajpal, P., Skolnik, E., Smith, D., Sharma, V. K., Vlassara, K., Cerami, A. & Suthanthiran, M. (1990). A novel addition to the Tcell repertory. Journal of Experimental Medicine 171, 941–6.Google Scholar
Kwiatkowski, D., Hill, A. V. S., Sambou, I., Twumasi, P., Castracane, J., Manogue, K. R., Cerami, A., Brewster, D. R. & Greenwood, B. M. (1990). TNF concentration in fatal, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 336, 1201–4.CrossRefGoogle ScholarPubMed
Le, J. & Vilcek, J. (1987). Biology of disease. Tumour necrosis factor and interleukin-1: cytokines with multiple overlapping biological activities. Laboratory Investigations 56, 234–48.Google Scholar
Piguet, P.-F., Grau, G. E. & Vassalli, P. (1990). Subcutaneous perfusion of tumour necrosis factor induces local proliferation of fibroblasts, capillaries, and epidermal cells, or massive tissue necrosis. American Journal of Pathology 136, 103–10.Google ScholarPubMed
Pohlman, T. H., Stannes, K. A., Beatty, P. G., Ochs, H. D. & Harlan, J. M. (1986). An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin-1, and tumour necrosis factor-α increases neutrophil adherence by a CDw18-dependent mechanism. Journal of Immunology 136, 4548–53.CrossRefGoogle ScholarPubMed
Polder, T., Jerusalem, C. & Eling, W. (1983). Topographical distribution of cerebral lesions in mice infected with Plasmodium berghei. Tropenmedizin und Parasitenkunde 34, 235–43.Google ScholarPubMed
Polder, T. W., Eling, W. M. C., Curfs, J. H. A. J., Jerusalem, C. R. & Wyers-Rouw, M. (1992). Ultrastructural changes in the blood-brain barrier of mice infected with Plasmodium berghei. Acta Leidensia 60, 3146.Google ScholarPubMed
Rubin, B. Y., Anderson, S. L., Sullivan, S. A., Williamson, B. D., Carswell, E. A. & Old, L. J. (1986). Nonhematopoietic cells selected for resistance to tumour necrosis factor produce tumour necrosis factor. Journal of Experimental Medicine 164, 1350–5.CrossRefGoogle Scholar
Schwarzer, E., Turrini, F., Ulliers, D., Giribaldi, G., Ginsburg, H. & Arese, P. (1992). Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. Journal of Experimental Medicine 176, 1033–41.CrossRefGoogle ScholarPubMed
Shear, H. L., Srinivasan, R., Nolan, T. & Ng, C. (1989). Role of IFN-γ in lethal and nonlethal malaria in susceptible and resistant murine hosts. Journal of Immunology 143, 2038–44.CrossRefGoogle ScholarPubMed
Stevenson, M. M., Tam, M. F. & Nowotarski, M. (1990). Role of interferon gamma and tumour necrosis factor in host resistance to Plasmodium chabaudi AS. Immunology Letters 25, 115–22.CrossRefGoogle ScholarPubMed
Sung, S.-S. J., Bjorndhal, J. M., Wang, C. Y., Kao, H. T. & Man Fu, S. (1988). Production of tumour necrosis factor/cachectin by human T cell lines and peripheral blood T lymphocytes stimulated by phorbol myristate acetate and anti-CD3 antibody. Journal of Experimental Medicine 167, 937–53.CrossRefGoogle Scholar
Tsujimoto, M., Yip, Y. K. & Vilcek, J. (1986). Interferon-γ enhances expression of cellular receptors for tumour necrosis factor. Journal of Immunology 136, 2441–4.CrossRefGoogle Scholar
Van Rooijen, N. (1989). The liposome-mediated macrophage ‘suicide’ technique. Journal of Immunological Methods 124, 16.CrossRefGoogle ScholarPubMed
Van Rooijen, N. (1992). Liposome-mediated elimination of macrophages. Research in Immunology 143, 215–19.CrossRefGoogle ScholarPubMed
Van Rooijen, N. & Claassen, E. (1988). In vivo elimination of macrophages in spleen and liver, using liposome-encapsulated drugs: methods and applications. In Liposomes as Drug Carriers: Trends and Progress, (ed. Gregoriadus, G.), pp. 131143. New York: John Wiley and Sons.Google Scholar
Van Rooijen, N., Kors, N. & Kraal, G. (1989). Macrophage subset repopulation in the spleen: differential kinetics after liposome-mediated elimination. Journal of Leucocyte Biology 45, 97104.CrossRefGoogle ScholarPubMed
Wallach, D., Holtmann, H., Engelmann, H. & Nophar, Y. J. (1988). Sensitisation and desensitisation to lethal effects of tumour necrosis factor and Il-1. Journal of Immunology 140, 2994–9.CrossRefGoogle ScholarPubMed
Warrell, D. A., Molyneux, M. E. & Beales, P. F. (1990). Severe and complicated malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 84 (Suppl. 2), 165.Google Scholar