Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T07:16:07.586Z Has data issue: false hasContentIssue false

Triphasic locomotor response of a plant-parasitic nematode to avermectin: inhibition by the GABA antagonists bicuculline and picrotoxin

Published online by Cambridge University Press:  06 April 2009

D. J. Wright
Affiliation:
Department of Pure and Applied Biology, Imperial College Silwood Park, Ashurst Lodge, Ascot, Berkshire SL5 7PY
A. J. Birtle
Affiliation:
Department of Pure and Applied Biology, Imperial College Silwood Park, Ashurst Lodge, Ascot, Berkshire SL5 7PY
I. T. J. Roberts
Affiliation:
Department of Pure and Applied Biology, Imperial College Silwood Park, Ashurst Lodge, Ascot, Berkshire SL5 7PY

Summary

The response of the plant parasitic nematode, Meloidogyne incognita (J2 stage) to avermectin B2a-23-one is triphasic, comprising an initial loss of locomotor activity where the juveniles remain sensitive to touch, a recovery phase and a final loss of activity where the juveniles are relatively insensitive to touch. In contrast, the acetylcholinesterase inhibitor, oxamyl, causes initial hyperactivity of juveniles followed by a progressive decline in movement. The addition of bicuculline and to a lesser extent picrotoxin, both antagonists of γ-aminobutyric acid (GABA), blocks the action of avermectin on M. incognita.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Campbell, W. C. (1981). An introduction to the Avermectins. New Zealand Veterinary Journal 29, 174–8.CrossRefGoogle Scholar
Corbett, J. R. (1974). The Biochemical Mode of Action of Pesticides. London: Academic Press.Google Scholar
Del Castillo, J., De Mello, W. C. & Morales, T. (1964). Inhibitory action of γ-aminobutyric acid (GABA) on Ascaris muscle. Experientia 20, 141–3.CrossRefGoogle ScholarPubMed
Fritz, L. C., Wang, C. C. & Gorio, A. (1979). Avermectin B1a irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proceedings of the National Academy of Science, USA 76, 2062–6.CrossRefGoogle ScholarPubMed
Gerschenfeld, H. M. (1973). Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Phyeiological Reviews 53, 1119.Google ScholarPubMed
Johnson, C. D. & Stretton, A. O. W. (1980). Neural control of locomotion in Ascaris: Anatomy, electrophysiology and biochemistry. In Nematodes as Biological Models, vol. 1 (ed. Zuckerman, B. M.), pp. 159195. New York: Academic Press.Google Scholar
Kass, I. S., Wang, C. C., Walrond, J. P. & Stretton, A. O. W. (1980). Avermectin B1a, a paralysing anthelmintic that affects interneurons and inhibitory motorneurons in Ascaris. Proceedings of the National Academy of Science, USA 77, 6211–15.CrossRefGoogle ScholarPubMed
Mellin, T. N., Busch, R. D. & Wang, C. C. (1983). Postsynaptic inhibition of invertebrate neuromuscular transmission by avermectin B1a. Neuropharmacology 22, 8996.CrossRefGoogle ScholarPubMed
Nistri, A. & Constanti, A. (1979). GABA and glutamate receptors. Progress in Neurobiology 13, 117235.CrossRefGoogle ScholarPubMed
Pong, S-S., DeHaven, R. & Wang, C. C. (1982). A comparative study of avermectin B1a and other modulators of the γ-aminobutyric acid receptor—chloride ion channel complex. The Journal of Neuroscience 2, 966–71.CrossRefGoogle ScholarPubMed
Pong, S-S., Wang, C. C. & Fritz, L. C. (1980). Studies on the mechanism of action of avermectin B1a. Stimulation of release of γ-aminobutyric acid from brain synaptosomes. Journal of Neurochemistry 34, 351–8.CrossRefGoogle ScholarPubMed
Preiser, F. A., Babu, J. R., Dybas, R. A., Haidri, A. A. & Putter, I. (1981). Avermectins, a new class of nematicides. Journal of Nematology 13, 457.Google Scholar
Rowe, J. S. & Ruddock, K. H. (1982). Depolarization of retinal horizontal cells by excitatory amino acid neurotransmitter agonists. Neuroscience Letters 30, 257–62.CrossRefGoogle ScholarPubMed
Sasser, J. N., Kirkpatrick, T. L. & Dybas, R. A. (1982). Efficacy of avermectins for root-knot control in tobacco. Plant Disease 66, 691–3.CrossRefGoogle Scholar
Sulston, J., Dew, M. & Brenner, J. (1975). Dopaminergic neurons in the nematode Caenorhabditis elegans. Journal of Comparative Neurology 163, 215–26.CrossRefGoogle ScholarPubMed
Wright, D. J. (1981). Nematicides: mode of action and new approaches to chemical control. In Plant Parasitic Nematodes, vol. 3 (ed. Zuckerman, B. M. and Rohde, R. A.), pp. 421449. New York: Academic Press.CrossRefGoogle Scholar
Wright, D. J. & Awan, F. A. (1978). Catecholaminergic structures in the nervous system of three nematode species, with observations on related enzymes. Journal of Zoology, London 185, 477–89.CrossRefGoogle Scholar
Wright, D. J., Birtle, A. J., Corps, A. E. & Dybas, R. A. (1983). Efficacy of avermectins against a plant parasitic nematode. Annals of Applied Biology 103, 465–70.CrossRefGoogle Scholar
Wright, P. J. & Womack, N. (1981). Control of development of Meloidogyne incognita by oxamyl and the effects of adjuvants on the efficacy of foliar treatments. Annals of Applied Biology 97, 297302.CrossRefGoogle Scholar