Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T18:27:15.591Z Has data issue: false hasContentIssue false

Trematodes: antagonism between species and sterilizing effects on snails in biological control

Published online by Cambridge University Press:  06 April 2009

Claude Combes
Affiliation:
Department de Biologie Animate, Universite, 66025 Perpignan Cedex, France

Summary

There are two ways in which trematodes can be used in the control of other trematodes which transmit diseases of medical or veterinary importance. Either they can interfere with the reproductive capacity of the host species of snails, or they can exert an antagonistic effect against the larval stages of the target trematode species inside the snail. Often the two effects act together.

There are six essential criteria for the selection of a suitable species of snail for control: (1) complete and permanent sterilizing effect; (2) clear dominance over target trematodes; (3) strong infectivity to molluscs of all ages; (4) high egg productivity in the definitive host; (5) lack of pathogenicity towards man and domestic animals; (6) ease and low cost of maintenance of the life-cycle.

Various field trials are discussed and it is considered that trematode species producing rediae are usually dominant over those producing only sporocysts (such as the schistosomes). Most species used in control trials to date have belonged to the family Echinostomatidae as they have rediae, and eggs that can be produced in large numbers in a laboratory host such as the rat.

The mathematical basis and feasibility of control schemes are discussed and it is concluded that much more information is necessary before their potential can be evaluated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M. (1978). Population dynamics of snail infection by miracidia. Parasitology 77, 201–24.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1979). Prevalence of schistosome infection within molluscan populations: observed patterns and theoretical predictions. Parasitology 79, 6394.CrossRefGoogle ScholarPubMed
Basch, P. F. (1970). Relationships of some larval Strigeids and Echinostomes (Trematoda): hyperparasitism, antagonism and ‘immunity’ in the snail host. Experimental Parasitology 27, 193216.CrossRefGoogle ScholarPubMed
Basch, P. F., Lie, K. J. & Heyneman, D. (1969). Antagonistic interaction between Strigeid and Schistosome sporocysts within a snail host. Journal of Parasitology 55, 753–8.CrossRefGoogle ScholarPubMed
Basch, P. F., Lie, K. J. & Heyneman, D. (1970). Experimental double and triple infections of snails with larval Trematodes. Southeast Asian Journal of Tropical Medicine and Public Health 1, 129–37.Google Scholar
Barus, V., Moravec, F., Rysavy, B. & Yousif, F. (1974). Antagonism of Echinostoma revolutum against Schistosoma mansoni in the snail Biomphalaria alexandrina. Folia parasitoligica 21, 143–54.Google ScholarPubMed
Bayer, F. A. H. (1954). Larval trematodes found in some freshwater snails; a suggested biological method of Bilharzia control. Transactions of the Royal Society of Tropical Medicine and Hygiene 48, 414–18.CrossRefGoogle ScholarPubMed
Boss, J. M. (1977) Synergism between Schistosoma mansoni and Echinostoma paraensei in the snail Biomphalaria glabrata. Dissertation for the Ph.D. in Parasitology, University of California, Berkeley, 151 pp.Google Scholar
Brygoo, E. R. (1965). Cycle experimental d'Echinostoma caproni, Richard 1964. Archives de l'lnstitut Pasteur de Madagascar 33, 207–9.Google Scholar
Cheng, T. C., Sullivan, J. T. & Harris, K. R. (1973). Parasitic castration of the marine Prosobranch Gastropod Nassarius obsoletus by sporocysts of Zoogonus rubellus (Trematoda): histopathology. Journal of Invertebrate Pathology 21, 183–90.CrossRefGoogle ScholarPubMed
Chernin, E. (1968). Interference with the capacity of Schistosoma mansoni miracidia to infect the molluscan host. Journal of Parasitology 54, 509–16.CrossRefGoogle ScholarPubMed
Chernin, E. & Perlstein, J. M. (1971). Protection of snails against miracidia of Schistosoma mansoni by various aquatic invertebrates. Journal of Parasitology 57, 217–19.CrossRefGoogle ScholarPubMed
Christensen, N. O., Nansen, P. & Frandsen, F. (1976). Molluscs interfering with the capacity of Fasciola hepatica miracidia to infect Lymnaea truncatula. Parasitology 73, 161–7.CrossRefGoogle ScholarPubMed
Christensen, N. O., Nansen, P. & Frandsen, F. (1977). Interference with Fasciola hepatica snail finding by various aquatic organisms. Parasitology 74, 285–90.CrossRefGoogle ScholarPubMed
Combes, C. (1976). Perspectives actuelles d'utilisation des parasites dans la lutte contre les Mollusques vecteurs des bilharzioses humaines. Wiadomosci Parazytologiczne 22, 351–4.Google Scholar
Combes, C., Leger, N. & Golvan, Y. J. (1975). Rats et bilharziose en Guadeloupe. Acta tropica 32, 304–8.Google ScholarPubMed
Combes, C. & Nassi, H. (1981). Trematodes for the control of schistosomiasis molluscan hosts. In Control of Vector by Parasites and Pathogens (Workshop 9, EMPO 3). Parasitology 82, 122–3.Google Scholar
Coutinho, F. A. B., Griffin, M. & Thomas, J. D. (1981). A model of schistosomiasis incorporating the searching capacity of the miracidium. Parasitology 82, 111–20.CrossRefGoogle Scholar
Donges, J. (1972). Double infection experiments with echinostomatids (Trematoda) in Lymnaea stagnalis by implantation of rediae and exposure to miracidia. International Journal for Parasitology 2, 409–23.CrossRefGoogle ScholarPubMed
Etges, F. J., Carter, O. S. & Webbe, G. (1975). Behavioral and developmental physiology of schistosome larvae as related to their molluscan hosts. Annals of the New York Academy of Sciences 226, 480–96.CrossRefGoogle Scholar
Golvan, Y., Combes, C. & Nassi, H. (1975). Castration du Mollusque Biomphalaria glabrata par les larves de divers Trématodes guadeloupéens. Comptes Rendus Academie des Sciences, Paris 280 D., 1607–10.Google Scholar
Hairston, N. G. (1973) The dynamics of transmission. In Epidemiology and Control of Schistosomiasis (ed. Ansari, ), pp., 250336. Basel: Karger; Baltimore: University Park Press.Google Scholar
Hairston, N. G., Wurzinger, K. H. & Burch, J. B. (1975) Non-chemical methods of snail control. WHO document, WHO/VBC/75.573.Google Scholar
Hamon, J. (1981). Control of vectors by parasites and pathogens (Workshop Proceedings, EMPO 3). Parasitology 82, 117–29.Google Scholar
Heyneman, D., Lim, H. K. & Jeyarasasingam, U. (1972). Antagonism of Echinostoma liei (Trematoda: Echinostomatidae) against the trematodes Paryphostomum segregatum and Schistosoma mansoni. Parasitology 65, 223–33.CrossRefGoogle ScholarPubMed
Heyneman, D. & Umathevy, T. (1967). A field experiment to test the possibility of using double infection of host snails as a possible biological control of schistosomiasis. Medical Journal of Malaya 21, 373.Google Scholar
Huizinga, H. W. (1973). Ribeiroia marini: Pathogenesis and larval trematode antagonism in the snail Biomphalaria glabrata. Experimental Parasitology 33, 350–64.CrossRefGoogle ScholarPubMed
James, C. & Prah, S. K. (1978). The influence of physical factors on the behaviour and infectivity of miracidia of Schistosoma mansoni and S. haematobium. III. Effect of contact time and dispersion in static and flowing waters. Journal of Helminthology 52, 221–6.CrossRefGoogle ScholarPubMed
Jobin, W. R. (1979). Cost of snail control. Americal Journal of Tropical Medicine and Hygiene 28, 142–54.CrossRefGoogle ScholarPubMed
Jordan, P. (1977). Schistosomiasis. Research to control. Americal Journal of Tropical Medicine and Hygiene 26, 877–86.CrossRefGoogle ScholarPubMed
Jordan, P., Christie, J. D. & Unrau, G. O. (1980). Schistosomiasis transmission with particular reference to possible ecological and biological methods of control. A review. Acta Tropica 37, 95135.Google ScholarPubMed
Joosse, J. (1979) Endocrinology of molluscs. In Pathways in Malacology, pp. 107–37. Utrecht: Scheltema and Holkema.Google Scholar
Jourdane, J. (1980). Interference by Schistosoma mansoni with the natural resistance to Echinostoma togoensis in Biomphalaria glabrata. Proceedings 3rd European Multicolloquium of Parasitology, Cambridge, 39.Google Scholar
Jourdane, J. & Kulo, S. D. (1981). Etude expérimentale du cycle biologique de Echinostoma togoensis n.sp., parasite à l'état larvaire de Biomphalaria pfeifferi au Togo. Annates de Parasitologie 56, 477–88.Google Scholar
Kechemir, N. (1980). Description et cycle de Echynoparyphium combesi sp.n. chez Bulinus truncatus, vecteur de Schistosoma haematobium en Algérie. Annates de Parasitologie 55, 5768.Google Scholar
Kuris, A.M. (1973). Biological control: implications of the analogy between the trophic interactions of Insect pest-parasitoid and Snail Trematodes Systems. Experimental Parasitology 33, 365–79.CrossRefGoogle ScholarPubMed
Kuris, A. M. (1974). Trophic, interactions: similarity of parasitic castrations to parasitoids. Quarterly Review of Biology 49, 129–48.CrossRefGoogle Scholar
Kuris, A. M. (1980). Echinostoma liei miracidia and Biomphalaria glabrata snails: effect of egg age, habitat heterogeneity, water quality and volume on infectivity. International Journal for Parasitology 10, 21–5.CrossRefGoogle ScholarPubMed
Kuris, A. M. & Warren, J. (1980). Echinostome cercarial penetration and metacercarial encystment as mortality factors for a second intermediate host, Biomphalaria glabrata. Journal of Parasitology 66, 630–5.CrossRefGoogle ScholarPubMed
Kwo, E. H., Lie, K. J. & Owyang, C. K. (1970). Predation of sporocysts of Fasciola gigantica by rediae of Echinostoma audyi. Southeast Asian Journal of Tropical Medicine and Public Health 1, 429.Google Scholar
Le Breton, J. (1979). La sexualité des Mollusques Gastéropodes et les Trématodes parasites. Apports de l'endocrinologie de la sexualité des Mollusques à l'étude et à l'interprétation des conséquences du parasitisme. Haliotis 8, 215241.Google Scholar
Lee, F. O. & Cheng, T. C. (1971 a). Schistosoma mansoni infection in Biomphalaria glabrata: alteration in heart rate and thermal tolerance in the host. Journal of Invertebrate Pathology 18, 418–21.CrossRefGoogle ScholarPubMed
Lee, F. O. & Cheng, T. C. (1971 6). Schistosoma mansoni: respirometric and partial pressures studies in infected Biomphalaria glabrata. Experimental Parasitology 30, 393–9.CrossRefGoogle ScholarPubMed
Le Roux, P. L. (1953). Metarcercarial infection responsible for heavy mortality amongst fresh water molluscs, intermediaries of mammalian schistosomes, in aquaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 47, 265.Google Scholar
Lie, K. J. (1966). Antagonistic interaction between Schistosoma mansoni sporocysts and Echinostome rediae in the snail Australorbis glabratus. Nature 211, 1213–15.Google Scholar
Lie, K. J. (1967). Antagonism of Paryphostomum segregatum rediae to Schistosoma mansoni sporocysts in the snail Biomphalaria glabrata. Journal of Parasitology 53, 969–76.CrossRefGoogle ScholarPubMed
Lie, K. J. (1971). Dispersal of eggs of a dominant trematode as a possible means of controlling trematode infection in the snail. Japanese Journal of Tropical Medicine 11, 46.Google Scholar
Lie, K. J. (1973). Larval trematode antagonism: principles and possible application as a control method. Experimental Parasitology 33, 343–9.CrossRefGoogle ScholarPubMed
Lie, K. J., Basch, P. F. & Heyneman, D. (1968). Direct and indirect antagonism between Paryphostomum segregatum and Echinostoma paraensei in the snail Biomphalaria glabrata. Zeitschrift für Parasitenkunde 31, 101–7.CrossRefGoogle Scholar
Lie, K. J., Basch, P. F., Heyneman, D. & Fitzgerald, F. (1968). Antagonism between two species of Echinostomes (Paryphostomum segregatum and Echinostoma lindoense) in the snail Biomphalaria glabrata. Zeitschrift für Parasitenkunde 30, 117–25.Google Scholar
Lie, K. J., Basch, P. F. & Hoffman, M. A. (1967). Antagonism between Paryphostomum segregatum and Echinostoma barbosai in the snail Biomphalaria straminea. Journal of Parasitology 53, 1205–9.CrossRefGoogle ScholarPubMed
Lie, K. J., Basch, P. F. & Umathevy, T. (1965). Antagonism between two species of larval trematodes in the same snail. Nature 206, 422–3.Google Scholar
Lie, K. J., Basch, P. F. & Umathevy, T. (1966). Studies in Echinostomatidae (Trematoda) in Malaya. XII. Antagonism between two species of Echinostome trematodes in the same lymnaeid snail. Journal of Parasitology 52, 454–7.CrossRefGoogle Scholar
Lie, K. J. & Heyneman, D. (1976). Studies on resistance in snails. Tissue reaction to Echinostoma lindoense sporocysts in sensitized and resensitized Biomphalaria glabrata. Journal of Parasitology 62, 51–8.CrossRefGoogle ScholarPubMed
Lie, K. J. & Heyneman, D. (1979). Capacity of irradiated echinostome sporocysts to protect Schistosoma mansoni in resistant Biomphalaria glabrata. International Journal for Parasitology 9, 539–43.CrossRefGoogle ScholarPubMed
Lie, K. J. & Heyneman, D. (1979). Acquired resistance to echinostomes in four Biomphalaria glabrata strains. International Journal for Parasitology 9, 533–7.CrossRefGoogle ScholarPubMed
Lie, K. J., Heyneman, D. & Jeong, K. J. (1976). Studies on resistance in snails. 7. Evidence of interference with the defence reaction in Biomphalaria glabrata by trematode larvae. Journal of Parasitology 62, 508615.CrossRefGoogle ScholarPubMed
Lie, K. J., Heyneman, D. & Kostanian, N. (1975). Failure of Echinostoma lindoense to reinfect snails already harbouring that species. International Journal for Parasitology 5, 483–6.CrossRefGoogle ScholarPubMed
Lie, K. J., Heyneman, D. & Richards, C. S. (1977 a). Studies on resistance in snails: Interference by non irradiated Echinostome larvae with natural resistance to Schistosoma mansoni in Biomphalaria glabrata. Journal of Invertebrate Pathology 29, 118–25.CrossRefGoogle Scholar
Lie, K. J., Heyneman, D. & Richards, C. S. (1977 b). Schistosoma mansoni: Temporary reduction of natural resistance in Biomphalaria glabrata induced by irradiated miracidia of Echinostoma paraensei. Experimental Parasitology 43, 5462.CrossRefGoogle ScholarPubMed
Lie, K. J., Kwo, E. H. & Owyang, C. K. (1970). A field trial to test the possible control of Schistosoma spindale by means of interspecific trematode antagonism. Southeast Asian Journal of Tropical Medicine and Public Health 1, 1928.Google Scholar
Lie, K. J., Kwo, E. H. & Owyang, C. K. (1971). Further trial to control Schistosoma spindale by Trematode antagonism. Southeast Asian Journal of Tropical Medicine and Public Health 2, 237–43.Google Scholar
Lie, K. J. & Owyang, C. K. (1973). A field trial to control Trichobilharzia brevis by dispersing eggs of Echinostoma audyi. Southeast Asian Journal of Tropical Medicine and Public Health 2, 208–17.Google Scholar
Lie, K. J., Schneider, C. R., Sornmani, S., Lanza, G. R. & Impand, P. (1974 a). Biological control by Trematode antagonism. I. A successful field trial to control Schistosoma spindale in Northeast Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 5, 4659.Google Scholar
Lie, K. J., Schneider, C. R., Sornmani, S., Lanza, G. R. & Impand, P. (1974 b). Biological control by Trematode antagonism. II. Failure to control Schistosoma spindale in a field trial in Northeast Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 5, 60–4.Google Scholar
Lie, K. J. & Virik, H. K. (1963). Human infection with Echinostoma malayanum Leiper, 1911 (Trematoda: Echinostomatidae). Journal of Tropical Medicine and Hygiene 66, 7782.Google ScholarPubMed
Lim, H. K. & Heyneman, D. (1972). Intramolluscan Inter-Trematode Antagonism: a review of factors influencing the host-parasite system and its possible role in Biological control. Advances in Parasitology 10, 191268.CrossRefGoogle ScholarPubMed
McCullough, F. S. (1981). Biological control of the snail intermediate hosts of human Schistosoma spp.: a review of its present status and future prospects. Acta Tropica 38, 513.Google ScholarPubMed
Mattes, O. (1949). Wirtsfindung, Invasionsvorgang und Wirtsspezifität beim Fasciola–Miracidium. Zeitschrift für Parasitenkunde 14, 320–63.CrossRefGoogle Scholar
Michelson, E. H. (1964). The protective action of Chaetogaster limnaei on snails exposed to Schistosoma mansoni. Journal of Parasitology 50, 441–4.CrossRefGoogle Scholar
Moravec, F., Barus, V., Rysavy, B. & Yousif, F. (1974 a). Observations on the development of two echinostomes, Echinoparyphium recurvatum and Echinostoma revolutum, the antagonists of human Schistosomes in Egypt. Folia parasitologica 21, 107–26.Google ScholarPubMed
Moravec, F., Barus, V., Rysavy, B. & Yousif, F. (1974 b). Antagonism of Echinoparyphium recurvatum against Schistosoma haematobium in the snail Bulinus truncatus. Foliaparasitologica 21, 127–41.Google ScholarPubMed
Nasir, P. (1979). Freshwater larval trematodes. Glimpses on biological control of Schistosoma mansoni. Rivista di Parassitologia 40, 1322.Google Scholar
Nassi, H. (1978). Données sur le cycle biologique de Ribeiroia marini guadeloupensis n.ssp., Trématode stérilisant Biomphalaria glabrata en Guadeloupe. Entretien du cycle en vue du contrôle éventuel des populations de Mollusques. Acta Tropica 35, 4156.Google Scholar
Nassi, H. (1979). Coïncidence entre le blocage précoce de la ponte de Biomphalaria glabrata (Gasteropoda: Pulmonata) et la localisation cérébrale des jeunes rédies mères de Ribeiroia marini guadeloupensis (Trematoda: Cathaemasidae). Comptes rendus Académie des Sciences Paris 289 D, 165–8.Google Scholar
Nassi, H. (1980). Données expérimentales sur le cycle biologique de Petasiger caribbensis n.sp. (Trematoda: Echinostomatidae) parasite larvaire de Biomphalaria glabrata en Guadeloupe. Annates de Parasitologie 55, 4155.Google Scholar
Nassi, H. & Bayssade-Dufour, C. (1980). Cycle biologique de Clinostomum golvani n.sp. (Trematoda: Clinostomidae) parasite larvaire de Biomphalaria glabrata, Mollusque vecteur de Schistosoma mansoni en Guadeloupe. Annates de Parasitologie 55, 527540.Google ScholarPubMed
Nassi, H., Pointier, J. P. & Golvan, Y. J. (1979). Bilan d'un essai de contrôle de Biomphalaria glabrata en Guadeloupe à l'aide d'un Trématode stérilisant. Annates de Parasitologie 54, 185–92.Google Scholar
Owyang, C. K. & Lie, K. J. (1971). Interaction between Hypoderaeum dingeri and Trichobilharzia brevis in the Lymnaea intermediate host. Proceedings of the Twelfth Pacific Science Congress, Canberra 1, 203.Google Scholar
Pellegrino, J., de Maria, M. & de Moura, M. F. (1966). Observations on the predatory activity of Lebistes reticulata (Peters, 1859) on cercariae of Schistosoma mansoni. American Journal of Tropical Medicine and Hygiene 15, 337–41.CrossRefGoogle Scholar
Pointier, J. P., Salvat, B., Delplanque, A. & Golvan, Y. (1977). Principaux facteurs régissant la densité des populations de Biomphalaria glabrata (Say, 1818), Mollusque vecteur de la Schistosomose en Guadeloupe (Antilles françaises). Annates de Parasitologie 52, 277323.Google Scholar
Pointier, J. P. & Theron, A. (1979). La schistosomose intestinale dans les forêts marécageuses à Pterocarpus de Guadeloupe (Antilles françaises). Ecologie du mollusque vecteur, Biomphalaria glabrata et de son parasite Schistosoma mansoni. Annates de Parasitologie 54, 4356.Google Scholar
Rees, W. J. (1936). The effect of parasitism by larval trematodes on the tissues of Littorina littorea (Linné). Proceedings of the Zoological Society of London 2, 357–68.Google Scholar
Richard, J. & Brygoo, E. R. (1978). Cycle évolutifdu Trématode Echinostoma caproni Richard, 1965 (Echinostomatoidea). Annates de Parasitologie 53, 265–75.Google Scholar
Rysavy, B., Ergens, R., Groschaft, J., Moravec, F., Yousif, F. & El-Hassan, A. A. (1973). Preliminary report on the possibility of utilizing competition of larval schistosomes and other larval Trematodes in the intermediate hosts for the biological control of schistosomiasis. Folia parasitologica 20, 293–6.Google ScholarPubMed
Sluiters, J. F. (1981). Development of Trichobilharzia ocellata in Lymnaea stagnalis and the effects of infection on the reproductive system of the host. Zeitschrift für Parasitenkunde 64, 303–19.CrossRefGoogle ScholarPubMed
Sluiters, J. F., Brussaard-Wust, C. M. & Meuleman, E. A. (1980). The relationship between miracidial dose, production of cercariae, and reproductive activity of the host in the combination Trichobilharzia ocellata and Lymnaea stagnalis. Zeitschrift für Parasitenkunde 63, 1326.CrossRefGoogle ScholarPubMed
Sturrock, R. F. & Upatham, G. S. (1973). An investigation of the interactions of some factors influencing the infectivity of Schistosoma mansoni miracidia to Biomphalaria glabrata. International Journal for Parasitology 3, 3541.CrossRefGoogle ScholarPubMed
Theron, A. (1979). A differential filtration technique for the measurement of schistosome cercarial densities in standing waters. Bulletin of the World Health Organization 57, 971–5.Google ScholarPubMed
Theron, A. (1980). Evaluation de la dérive cercarienne dans les sites de transmission des schistosomoses à partir d'un prélèvement journalier unique. Exemple de foyers guadeloupéens à Schistosoma mansoni. Revue d'Epidémiologic et de Santé Publique 28, 131–9.Google Scholar
Thomas, J. D. (1973). Schistosomiasis and the control of molluscan hosts of human Schistosomes with particular reference to possible self-regulatory mechanisms. Advances in Parasitology 11, 307–94.CrossRefGoogle ScholarPubMed
Upatham, E. S. (1972 a). Effects of some physico-chemical factors on the infection of Biomphalaria glabrata (Say) by the miracidia of Schistosoma mansoni Sambon in St Lucia, West Indies. Journal of Helminthology 46, 107–15.Google Scholar
Upatham, E. S. (1972 6). Interference by unsusceptible aquatic animals with the capacity of the miracidia of Schistosoma mansoni Sambon to infect Biomphalaria glabrata (Say) under field-simulated conditions in St Lucia, West Indies. Journal of Helminthology 46, 277–83.CrossRefGoogle Scholar
Wilson, R. A. & Taylor, S. L. (1978). The effect of variations in host parasite density on the level of parasitization of Lymnaea truncatula by Fasciola hepatica. Parasitology 76, 91–8.CrossRefGoogle ScholarPubMed
Wright, C. A. (1967). The pathogenesis of helminths in the Mollusca. Helminthological Abstracts 35, 207–24.Google Scholar
Wright, C. A. (1968). Some views on biological control of trematode diseases. Transactions of the Royal Society of Tropical Medicine and Hygiene 62, 320–4.CrossRefGoogle ScholarPubMed
Wright, C. A. & Rollinson, D. (1979). Analysis of enzymes in the Bulinus africanus group (Mollusca: Planorbidae) by isoelectric focusing. Journal of Natural History 13, 263–73.CrossRefGoogle Scholar
Wright, C. A., Rollinson, D. & Coll, P. H. (1979). Parasites in Bulinus senegalensis (Mollusca: Planorbidae) and their detection. Parasitology 79, 95105.CrossRefGoogle ScholarPubMed