Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T17:31:58.546Z Has data issue: false hasContentIssue false

Studies on the egg of the horse bot-fly, Gasterophilus intestinalis (De Geer)

Published online by Cambridge University Press:  06 April 2009

R. J. Tatchell
Affiliation:
Molteno Institute, University of Cambridge

Extract

1. A description is given of the egg of Gasterophilus intestinalis.

2. The chorion has been shown to consist of a number of tanned protein and lipoprotein layers.

3. The waterproofing of the egg is shown to be dependent on a primary wax layer on the inner membrane of the endochorion and a secondary layer on the vitelline membrane.

4. The respiratory requirements of the egg are supplied from a free-air space between the inner membrane and the tanned protein layer of the endochorion which communicates with the atmosphere by specialized pore canals opening into the follicular grooves.

Thanks are due to Dr P. Tate for suggesting the subject of this work and for his advice and encouragement during its progress.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, J. R. (1946). The histochemical recognition of lipine. Quart. J. Micr. Sci. 87, 441–70.Google ScholarPubMed
Beament, J. W. L. (1946). The formation and structure of the chorion of the egg in an hemipteran, Rhodnius prolixus. Quart. J. Micr. Sci. 87, 393439.Google Scholar
Beament, J. W. L. (1959). The waterproofing mechanism of arthropods. 1. The effect of temperature on cuticle permeability in terrestrial insects and ticks. J. Exp. Biol. 36, 391422.CrossRefGoogle Scholar
Christophers, R. (1960). Aëdes aegypti. The Yellow Fever Mosquito: its Life History, Bionomics and Structure. Cambridge University Press.Google Scholar
Davies, L. (1948). Laboratory studies on the egg of the blow-fly Lucilia sericata (Mg). J. Exp. Biol. 25, 7185.CrossRefGoogle Scholar
Goddard, D. R. & Michaelis, L. (1934). A study on keratin. J. Biol. Chem. 106, 605–14.CrossRefGoogle Scholar
Hinton, H. E. (1959). Plastron respiration in the eggs of Drosophila and other flies. Nature, Lond., 184, 280–1.CrossRefGoogle Scholar
Hinton, H. E. (1960). The structure and function of the respiratory horns of the eggs of some flies. Phil. Trans. B, 243, 4573.Google Scholar
Johri, L. N. & Smyth, J. D. (1956). A histochemical approach to the study of helminth morphology. Parasitology, 46, 107–16.CrossRefGoogle Scholar
Lison, L. (1936). Histochemie animale. Paris: Gauthier-Villars.Google Scholar
Monné, L. & Hönig, G. (1954). On the properties of the egg envelopes of the parasitic nematodes Trichuris and Capillaria. Ark. Zool. (2), 6, 559–62.Google Scholar
Pantel, J. (1913). Recherches sur les Diptères à larves entomobies. II. Les enveloppes de l'œuf avec leur dépendances, les dégâts indirects du parasitisme. La Cellule, 29, 7289.Google Scholar
Pearse, A. G. E. (1960). Histochemistry. Theoretical and applied. London: J. and A. Churchill Ltd.Google Scholar
Wigglesworth, V. B. (1945). Transpiration through the cuticle of insects. J. Exp. Biol. 21, 97114.CrossRefGoogle Scholar
Wigglesworth, V. B. (1947). The epicuticle in an insect, Rhodnius prolixus (Hemiptera). Proc. Roy. Soc. B, 134, 163–81.Google ScholarPubMed
Wigglesworth, V. B. (1950). A new method for injecting the tracheae and tracheoles of insects. Quart. J. Micr. Sci. 91, 217–24.Google ScholarPubMed
Wigglesworth, V. B. (1959). The role of the epidermal cells in the ‘migration’ of tracheoles in Rhodnius prolixus (Hemiptera). J. Exp. Biol. 36, 632–40.CrossRefGoogle Scholar
Wigglesworth, V. B. & Beament, J. W. L. (1950). The respiratory mechanisms of some insect eggs. Quart. J. Micr. Sci. 91, 429–52.Google ScholarPubMed
Wigglesworth, V. B. & Beament, J. W. L. (1960). The respiratory structures in the eggs of higher Diptera. J. Ins. Physiol. 4, 184–9.CrossRefGoogle Scholar