Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T21:06:58.216Z Has data issue: false hasContentIssue false

Studies on the amphid specific glycoprotein gp32 in different life-cycle stages of Meloidogyne species

Published online by Cambridge University Press:  06 April 2009

G. R. Stewart
Affiliation:
1Department of Biology, Imperial College, Silwood Park, Ascot, Berks SL5 7PY 2Entomology and Nematology Department, AFRC IACR, Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ
R. N. Perry
Affiliation:
2Entomology and Nematology Department, AFRC IACR, Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ
D. J. Wright
Affiliation:
1Department of Biology, Imperial College, Silwood Park, Ascot, Berks SL5 7PY

Summary

Indirect immunofluorescent studies have been used to localize a glycoprotein (gp32) in the amphids of 2nd-stage juveniles (J2) of Meloidogyne incognita parasitic in the roots of tomato plants, male Meloidogyne javanica and some young adult female M. incognita. Immuno-electron microscopic studies showed an apparent absence of gp32 in the amphids of mature adult female M. incognita. Chemoattraction experiments demonstrated that the binding of gp32 antibodies to the amphidial secretions of infective J2 M. incognita partly impaired the ability of the nematodes to locate tomato roots.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bargmann, C. I., Thomas, J. H. & Horvitz, H. R. (1990). Chemosensory cell function in the behavior and development of Caenorhabditis elegans. In Cold Spring Harbor Symposia on Quantitative Biology, vol. 55, pp. 529–38. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Bird, A. F. (1966). Esterases in the Genus Meloidogyne. Nematologica 12, 359–61.CrossRefGoogle Scholar
Davis, E. L., Aron, L. M., Pratt, L. H. & Hussey, R. S. (1992). Novel immunization procedures used to develop antibodies that bind to specific structures in Meloidogyne spp. Phytopathology 82, 1244–50.CrossRefGoogle Scholar
Endo, B. Y. (1971). Nematode-induced syncytia (giant cells). Host-parasite relationships of Heteroderidae. In Plant Parasitic Nematodes, Vol 2 (ed. Zuckerman, B. M., Mai, W. F. & Rohde, R. A.) pp. 91117. London: Academic Press.Google Scholar
Endo, B. Y. (1978). Feeding plug formation in soybean roots infected with soybean cyst nematode. Phytopathology 68, 23–6.CrossRefGoogle Scholar
Esbenshade, P. R. & Triantaphyllou, A. C. (1987). Enzymatic relationships and evolution in the genus Meloidogyne (Nematoda:Tylenchida). Journal of Nematology 19, 818.Google ScholarPubMed
Jones, J. T. & Ap Gwynn, I. (1991). A method for rapid fixation and dehydration of nematode tissue for transmission electron microscopy. Journal of Microscopy 164, 4351.CrossRefGoogle Scholar
McLaren, D. J. (1976). Nematode sense organs. Advances in Parasitology 14, 195265.CrossRefGoogle ScholarPubMed
Prot, J.-C. (1980). Migration of plant-parasitic nematodes towards plant roots. Revue de Nématologie 3, 305–18.Google Scholar
Santos, M. S. N., De, A. (1972). Mobility of males of Meloidogyne spp. and their response to females. Nematologica 19, 521–7.CrossRefGoogle Scholar
Sijmons, P. C., Grundler, F. M. W., Von Mende, N., Burrows, P. R. & Wyss, U. (1991). Arabidopsis thaliana as a new model host for plant-parasitic nematodes. The Plant Journal 1, 245–54.CrossRefGoogle Scholar
Stewart, G. R., Perry, R. N., Alexander, J. & Wright, D. J. (1993). A glycoprotein specific to the amphids of Meloidogyne species. Parasitology 106, 405–12.CrossRefGoogle Scholar
Wright, D. J. & Rowland, A. J. (1982). Susceptibility of different developmental stages of the root-knot nematode, Meloidogyne incognita, to the nematicide oxamyl. Annals of Applied Biology 100, 521–5.CrossRefGoogle Scholar