Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-16T00:33:57.807Z Has data issue: false hasContentIssue false

Proteomic analysis of Entamoeba histolytica

Published online by Cambridge University Press:  11 October 2006

J. TOLSTRUP
Affiliation:
Bernhard Nocht Institute for Tropical Medicine, 74 Bernhard Nocht Strasse, 20359 Hamburg, Germany
E. KRAUSE
Affiliation:
Leibniz Institute of Molecular Pharmacology, 10 Robert-Rössle Strasse, 13125 Berlin, Germany
E. TANNICH
Affiliation:
Bernhard Nocht Institute for Tropical Medicine, 74 Bernhard Nocht Strasse, 20359 Hamburg, Germany
I. BRUCHHAUS
Affiliation:
Bernhard Nocht Institute for Tropical Medicine, 74 Bernhard Nocht Strasse, 20359 Hamburg, Germany

Abstract

In this study, the proteome of axenically grown Entamoeba histolytica parasites was explored by two-dimensional gel electrophoresis (2-DE), employing a practical and effective procedure for the solubilization of E. histolytica proteins. Approximately 900 protein species in the pH range between 4 and 7 were detected by Coomassie Blue staining. Ninety-five spots were excised, trypsinated and subjected to mass spectrometry. The resultant data from peptide mass fingerprints were compared with those available in the E. histolytica genome and the (non-redundant) National Center for Biotechnology Information (NCBI) databases for the identification and categorization of proteins. Sixty-three of the proteins identified were predicted to relate to the cytoskeleton, surface, glycolysis, RNA/DNA metabolism, the ubiquitin-proteasome system, vesicular trafficking and signal transduction. The present study demonstrates, for the first time, that corresponding genes are indeed expressed in E. histolytica and provides a foundation for further proteomic studies of this parasite.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bamburg, J. R. ( 1999). Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annual Review of Cellular Developmental Biology 15, 185230.CrossRefGoogle Scholar
Bruchhaus, I. and Tannich, E. ( 1994). Purification and molecular characterization of the NAD(+)-dependent acetaldehyde/alcohol dehydrogenase from Entamoeba histolytica. The Biochemical Journal 303, 743748.CrossRefGoogle Scholar
Chen, M., Li, E. and Stanley, S. L. Jr. ( 2004). Structural analysis of the acetaldehyde dehydrogenase activity of Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a member of the ADHE enzyme family. Molecular and Biochemical Parasitology 137, 201205.CrossRefGoogle Scholar
Cheng, X. J., Hughes, M. A., Huston, C. D., Loftus, B., Gilchrist, C. A., Lockhart, L. A., Ghosh, S., Miller-Sims, V., Mann, B. J., Petri, W. A. Jr. and Tachibana, H. ( 2001). Intermediate subunit of the Gal/GalNAc lectin of Entamoeba histolytica is a member of a gene family containing multiple CXXC sequence motifs. Infection and Immunity 69, 58925898.CrossRefGoogle Scholar
Davis, P. H., Zhang, Z., Chen, M., Zhang, X., Chakraborty, S. and Stanley, S. L. Jr. ( 2006). Identification of a family of BspA like surface proteins of Entamoeba histolytica with novel leucine rich repeats. Molecular and Biochemical Parasitology 145, 111116.CrossRefGoogle Scholar
Debnath, A., Das, P., Sajid, M. and McKerrow, J. H. ( 2004). Identification of genomic responses to collagen binding by trophozoites of Entamoeba histolytica. Journal of Infectious Diseases 190, 448457.CrossRefGoogle Scholar
Diamond, L. S., Harlow, D. R. and Cunnick, C. C. ( 1978). A new medium for axenic cultivation of Entamoeba histolytica and other Entamoeba. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 431432.CrossRefGoogle Scholar
Frederick, J. R. and Petri, W. A. Jr. ( 2005). Roles for the galactose-/N-acetylgalactosamine-binding lectin of Entamoeba in parasite virulence and differentiation. Glycobiology 15, 53R59R.CrossRefGoogle Scholar
Kobe, B. and Kajava, A. V. ( 2001). The leucine-rich repeat as a protein recognition motif. Current Opinion of Structural Biolology 11, 725732.CrossRefGoogle Scholar
Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. and Vale, R. D. ( 1996). Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature, London 380, 550555.CrossRefGoogle Scholar
Leitsch, D., Radauer, C., Paschinger, K., Wilson, I. B., Breiteneder, H., Scheiner, O. and Duchene, M. ( 2005). Entamoeba histolytica: analysis of the trophozoite proteome by two-dimensional polyacrylamide gel electrophoresis. Experimental Parasitology 110, 191195.CrossRefGoogle Scholar
Loftus, B., Anderson, I., Davies, R., Alsmark, U. C., Samuelson, J., Amedeo, P., Roncaglia, P., Berriman, M., Hirt, R. P., Mann, B. J., Nozaki, T., Suh, B., Pop, M., Duchene, M., Ackers, J., Tannich, E., Leippe, M., Hofer, M., Bruchhaus, I., Willhoeft, U., Bhattacharya, A., Chillingworth, T., Churcher, C., Hance, Z., Harris, B., Harris, D., Jagels, K., Moule, S., Mungall, K., Ormond, D., Squares, R., Whitehead, S., Quail, M. A., Rabbinowitsch, E., Norbertczak, H., Price, C., Wang, Z., Guillen, N., Gilchrist, C., Stroup, S. E., Bhattacharya, S., Lohia, A., Foster, P. G., Sicheritz-Ponten, T., Weber, C., Singh, U., Mukherjee, C., El-Sayed, N. M., Petri, W. A. Jr., Clark, C. G., Embley, T. M., Barrell, B., Fraser, C. M. and Hall, N. ( 2005). The genome of the protist parasite Entamoeba histolytica. Nature, London 433, 865868.CrossRefGoogle Scholar
MacFarlane, R., Bhattacharya, D. and Singh, U. ( 2005 a). Genomic DNA microarrays for Entamoeba histolytica: applications for use in expression profiling and strain genotyping. Experimental Parasitology 110, 196202.Google Scholar
MacFarlane, R. C., Shah, P. H. and Singh, U. ( 2005 b). Transcriptional profiling of Entamoeba histolytica trophozoites. International Journal for Parasitology 35, 533542.Google Scholar
MacFarlane, R. C. and Singh, U. ( 2006). Identification of differentially expressed genes in virulent and nonvirulent Entamoeba species: potential implications for amebic pathogenesis. Infection and Immunity 74, 340351.CrossRefGoogle Scholar
Maciver, S. K., Pope, B. J., Whytock, S. and Weeds, A. G. ( 1998). The effect of two actin depolymerizing factors (ADF/cofilins) on actin filament turnover: pH sensitivity of F-actin binding by human ADF, but not of Acanthamoeba actophorin. European Journal of Biochemistry 256, 388397.CrossRefGoogle Scholar
Mann, B. J. ( 2002). Structure and function of the Entamoeba histolytica Gal/GalNAc lectin. International Review of Cytology 216, 5980.CrossRefGoogle Scholar
Marion, S., Laurent, C. and Guillen, N. ( 2005). Signalization and cytoskeleton activity through myosin IB during the early steps of phagocytosis in Entamoeba histolytica: a proteomic approach. Cellular Microbiology 7, 15041518.CrossRefGoogle Scholar
Moon, A. and Drubin, D. G. ( 1995). The ADF/Cofilin proteins: stimulus-responsive modulators of actin dynamics. Molecular Biology of the Cell 6, 14231431.CrossRefGoogle Scholar
Neuhoff, V., Arold, N., Taube, D. and Ehrhardt, W. ( 1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255262.CrossRefGoogle Scholar
Okada, M., Huston, C. D., Mann, B. J., Petri, W. A. Jr., Kita, K. and Nozaki, T. ( 2005). Proteomic analysis of phagocytosis in the enteric protozoan parasite Entamoeba histolytica. Eukaryotic Cell 4, 827831.CrossRefGoogle Scholar
Okada, M., Huston, C. D., Oue, M., Mann, B. J., Petri, W. A. Jr., Kita, K. and Nozaki, T. ( 2006). Kinetics and strain variation of phagosome proteins of Entamoeba histolytica by proteomic analysis. Molecular and Biochemical Parasitology 145, 171183.CrossRefGoogle Scholar
Pappin, D. J., Hojrup, P. and Bleasby, A. J. ( 1993). Rapid identification of proteins by peptide-mass fingerprinting. Current Biology 3, 327332.CrossRefGoogle Scholar
Rohrig, U., Gerisch, G., Morozova, L., Schleicher, M. and Wegner, A. ( 1995). Coactosin interferes with the capping of actin filaments. FEBS Letters 374, 284286.CrossRefGoogle Scholar
Saito-Nakano, Y., Loftus, B. J., Hall, N. and Nozaki, T. ( 2005). The diversity of Rab GTPases in Entamoeba histolytica. Experimental Parasitology 110, 244252.CrossRefGoogle Scholar
Shah, P. H., MacFarlane, R. C., Bhattacharya, D., Matese, J. C., Demeter, J., Stroup, S. E. and Singh, U. ( 2005). Comparative genomic hybridizations of Entamoeba strains reveal unique genetic fingerprints that correlate with virulence. Eukaryotic Cell 4, 504515.CrossRefGoogle Scholar
Sharma, A., Sojar, H. T., Glurich, I., Honma, K., Kuramitsu, H. K. and Genco, R. J. ( 1998). Cloning, expression, and sequencing of a cell surface antigen containing a leucine-rich repeat motif from Bacteroides forsythus ATCC 43037. Infection and Immunity 66, 57035710.Google Scholar
Takai, Y., Kaibuchi, K., Sasaki, T., Tanaka, K., Shirataki, H. and Nakanishi, H. ( 1994). Rho small G protein and cytoskeletal control. Princess Takamatsu Symposium 24, 338350.Google Scholar
WORLD HEALTH ORGANIZATION ( 1997). WHO/PanAmerican Health Organization/UNESCO Bulletin. World Health Organization 72, 97100.
Yang, W., Li, E., Kairong, T. and Stanley, S. L. Jr. ( 1994). Entamoeba histolytica has an alcohol dehydrogenase homologous to the multifunctional adhE gene product of Escherichia coli. Molecular and Biochemical Parasitology 64, 253260.CrossRefGoogle Scholar