Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-28T06:30:29.136Z Has data issue: false hasContentIssue false

Proteinases in the excretory/secretory products (ES) of adult Trichinella spiralis

Published online by Cambridge University Press:  06 April 2009

V. K. Todorova
Affiliation:
Wellcome Laboratories for Experimental Parasitology, University of Glasgow, Bearsden, Glasgow
D. P. Knox
Affiliation:
Moredun Research Institute, 408 Gilmerton Road, Edinburgh
M. W. Kennedy
Affiliation:
Wellcome Laboratories for Experimental Parasitology, University of Glasgow, Bearsden, Glasgow

Summary

Adult Trichinella spiralis were maintained in vitro using defined media and the material excreted/secreted (ES) during this time examined for proteolytic enzyme (proteinase) activity using an azocasein assay and gelatin-substrate gels. Several discrete proteinases in the size range 14–100 kDa were observed with optimal activity at pH 7·5. The use of a class-differentiating panel of proteinase inhibitors indicated that serine proteinases were predominant although some inhibition was evident in the presence of cysteine and metalloproteinase inhibitors. Of a panel of potential natural protein substrates tested, ES proteinases only degraded fibrinogen and plasminogen and degradation was, in part, susceptible to the action of serine, cysteine and aspartyl proteinase inhibitors. In addition, antibody harvested from immune but not normal mice inhibited ES proteinase activity, an observation of relevance to the immunobiology of Trichinosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almond, N. M. & Parkhouse, R. M. E. (1985). Nematode antigens. Current Topics in Microbiology and Immunology 120, 173203.Google ScholarPubMed
Auriault, C., Pestel, J., Joseph, M., Dessaint, J. P. & Capron, A. (1981). Interaction between macrophages and Schistosoma mansoni schistosomula: role of IgG peptides and aggregates on the modulation of B-glucuronidase release and cytotoxicity against schistosomula. Cellular Immunology 62, 1527.CrossRefGoogle Scholar
Beynon, R. J. & Salvesen, G. (1989). Commercially available protease inhibitors. In Proteoloytic Enzymes – a Practical Approach, (ed. Beynon, R. J. & Bond, J. S.), pp. 241249. Oxford, New York, Tokyo: IRL Press.Google Scholar
Britton, C., Knox, D. P., Canto, G. J., Urquhart, G. M. & Kennedy, M. W. (1992). The secreted and somatic proteinases of the bovine lungworm Dictyocaulus viviparus and their inhibition by antibody from infected and vaccinated animals. Parasitology 105, 325–33.CrossRefGoogle ScholarPubMed
Chappell, C. L. & Dresden, M. H. (1986). Schistosoma mansoni: proteinase activity of ‘haemoglobinase’ from the digestive tract of adult worms. Experimental Parasitology 61, 160–7.CrossRefGoogle Scholar
Criado-Fornelio, A., Dearmas-Serra, C., Gimenez-Pardo, C., Casado-Escribano, N, Jiminez-Gonzalez, A. & Rodriguez-Caabeiro, F. (1992). Proteolytic enzymes from Trichinella spiralis larvae. Veterinary Parasitology 45, 133–40.CrossRefGoogle ScholarPubMed
Despommier, D. D. & Laccetti, A. (1981). Trichinella spiralis: proteins and antigens isolated from a large-particle fraction derived from the muscle larva. Experimental Parasitology 51, 279–95.CrossRefGoogle ScholarPubMed
Gould, A. M., Despommier, D. D. & Buck, S. W. (1990). Partial characterisation of two antigens secreted by L1 larvae of Trichinella spiralis. Molecular and Biochemical Parasitology 41, 187–96.CrossRefGoogle Scholar
Healer, J., Ashall, F. & Maizels, R. M. (1991). Characterization of proteolytic enzymes from larval and adult Nippostrongylus brasiliensis. Parasitology 103, 305–14.CrossRefGoogle ScholarPubMed
Hotez, P. J. & Cerami, A. (1983). Secretion of a proteolytic anticoagulant by Ancylostoma hookworms. Journal of Experimental Medicine 157, 1594–603.CrossRefGoogle ScholarPubMed
Hotez, P. J., Le Trang, N. L., McKerrow, J. H. & Cerami, A. (1985). Isolation and characterisation of a proteolytic enzyme from the adult hookworm, Ancylostoma caninum. Journal of Biological Chemistry 260, 7343–8.Google Scholar
Kennedy, M. W., Wassom, D. L., McIntosh, A. E. & Thomas, J. C. (1991). H-2 (1-A) control of the antibody repertoire to secreted antigens of Trichinella spiralis in infection and its relevance to resistance and susceptibility. Immunology 73, 3643.Google Scholar
Knox, D. P. (1994). Parasite enzymes and the control of roundworm and fluke infestation in domestic animals. British Veterinary Journal 150, 319–38.CrossRefGoogle ScholarPubMed
Knox, D. P. & Kennedy, M. W. (1988). Proteases released by the parasitic larval stages of Ascaris suum and their inhibition by antibody. Molecular and Biochemical Parasitology 28, 207–16.Google Scholar
Knox, D. P., Redmond, D. L. & Jones, D. G. (1993). Characterization of the proteinases in extracts of adult Haemonchus contortus, the ovine abomasal nematode. Parasitology 106, 395404.CrossRefGoogle ScholarPubMed
Knox, D. P. & Schallig, H. D. F. (1994). Characterization of the secreted proteinases of adult Haemonchus contortus, the ovine abomasal nematode. British Society for Parasitology, Spring Meeting. Abstract p. 86.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.Google Scholar
Matthews, B. E. (1977). The passage of larval helminths through tissue barriers. In Parasite Invasion, Symposium of the British Society for Parasitology, 15, pp. 93119. London: Blackwell Scientific.Google Scholar
McKeand, J. B. & Knox, D. P. (1994). Multicellular parasite vaccines. In Manual for the Production and Quality Control of Veterinary Vaccines for Use in Developing Countries. Food and Agriculture Organization of the United Nations.Google Scholar
McKerrow, J. H. (1989). Parasite proteases. Experimental Parasitology 68, 111–15.CrossRefGoogle ScholarPubMed
McKerrow, J. H. & Doenhoff, M. (1988). Schistosome proteases. Parasitology Today 4, 334–40.CrossRefGoogle ScholarPubMed
Newlands, G. F. J., Knox, D. P., Pirie-Shepherd, S. R. & Miller, H. R. P. (1993). Biochemical and immunological characterisation of multiple glycoforms of mouse mast cell protease. 1. Comparison with a murine serosal mast cell protease (MMCP-4) Biochemical Journal 294, 127–35.Google Scholar
Rhoads, M. L. (1983). Trichinella spiralis: identification and purification of superoxide dismutase. Experimental Parasitology 56, 4154.CrossRefGoogle ScholarPubMed
Robertson, B. D., Bianco, A. E., McKerrow, J. H. & Maizels, R. M. (1989). Toxocara canis: proteolytic enzymes secreted by the infective larvae in vitro. Experimental Parasitology 69, 30–6.CrossRefGoogle ScholarPubMed
Rothwell, T. L. W. & Merritt, G. C. (1974). Acetylcholinesterase secretion by parasitic nematodes. II. International Journal for Parasitology 3, 599608.CrossRefGoogle Scholar
Wright, K. A. (1979). Trichinella spiralis: an intracellular parasite in the intestinal phase. Journal of Parasitology 65, 441–5.Google Scholar
Zarlenga, D. S. & Gamble, H. (1990). Molecular cloning and expression of an immunodominant 53 kDa excretory–secretory antigen from Trichinella spiralis muscle larvae. Molecular and Biochemical Parasitology 42, 165–74.CrossRefGoogle ScholarPubMed