Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T20:58:35.584Z Has data issue: false hasContentIssue false

Population dynamics of Antarctophthirus microchir (Anoplura: Echinophthiriidae) in pups from South American sea lion, Otaria flavescens, in Northern Patagonia

Published online by Cambridge University Press:  21 January 2009

F. J. AZNAR*
Affiliation:
Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, P.O. Box 22085, 46071Valencia, Spain
M. S. LEONARDI
Affiliation:
Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico (CONICET), Boulevard Brown 3600, CP 9120, Puerto Madryn, Argentina
B. BERÓN VERA
Affiliation:
Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico (CONICET), Boulevard Brown 3600, CP 9120, Puerto Madryn, Argentina
D. G. VALES
Affiliation:
Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico (CONICET), Boulevard Brown 3600, CP 9120, Puerto Madryn, Argentina
S. AMEGHINO
Affiliation:
Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico (CONICET), Boulevard Brown 3600, CP 9120, Puerto Madryn, Argentina
J. A. RAGA
Affiliation:
Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico (CONICET), Boulevard Brown 3600, CP 9120, Puerto Madryn, Argentina
E. A. CRESPO
Affiliation:
Laboratorio de Mamíferos Marinos, Centro Nacional Patagónico (CONICET), Boulevard Brown 3600, CP 9120, Puerto Madryn, Argentina
*
*Corresponding author: Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, P.O. Box 22085, 46071Valencia, Spain. Tel: +34 96 354 36 57. Fax: +34 96 354 37 33. E-mail: Francisco.aznar@uv.es

Summary

We analysed population dynamics of the louse Antarctophthirus microchir in pups of the South American sea lion, Otaria flavescens, at the Punta León rookery (Argentina) over a period of 2 years. A total of 136 pups were aged and marked at the beginning of the lactation period ashore, then sampled for lice at different times within 30 days. Sampling was restricted to the chest and belly, two sites where lice were especially abundant. This concentration on ventral areas might protect lice from thermal stress in the austral summer. Infestation patterns in pups ⩽3 days old suggested that the potential for transmission increased from first nymphs to adults. Population trends of each instar with pup age, based on standardised values of abundance, were conserved between years, reflecting the basic dynamics of recruitment and reproduction. However, trends based on log-transformed abundances varied significantly between years; apparently, environmental conditions affected growth of lice populations differently each year. Stage-based deterministic models for population growth of A. microchir suggested generation times from 18 to 23 days. Accordingly, only 2 lice generations might be produced before pups start going to the sea. Shortening the cycle to accommodate a third generation might be risky, whereas a 2-generation cycle might at least result in larger females producing higher numbers of viable offspring.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246.Google Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Campagna, C. (1985). The breeding cycle of the southern sea lion, Otaria byronia. Marine Mammal Science 1, 201218.Google Scholar
Campagna, C. and Le Boeuf, B. J. (1988). Reproductive behaviour of Southern sea lions. Behaviour 104, 233261.CrossRefGoogle Scholar
Cappozzo, H. L. (2002). South American sea lion (Otaria flavescens). In Encyclopedia of Marine Mammals (ed. Perrin, W. F., Würsig, B. and Thewissen, J. G. M., pp. 11431146. Academic Press, San Diego, CA, USA.Google Scholar
Chaudhuri, R. P. and Kumar, P. (1961). The life history and habits of the buffalo louse, Haematopinus tuberculatus (Burmeister) Lucas. Indian Journal of Veterinary Science and Animal Husbandry 31, 275287.Google Scholar
Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 83, 596610.CrossRefGoogle Scholar
Conover, W. J. (1999). Practical Nonparametric Statistics. 3rd Edn.Wiley & Sons, New York, USA.Google Scholar
Craufurd-Benson, H. J. (1941). The cattle lice of Great Britain. Part I. Biology, with special reference to Haematopinus eurysternus. Parasitology 33, 331342.CrossRefGoogle Scholar
Dans, S. L., Crespo, E. A., Pedraza, S. N. and Koen-Alonso, M. (2004). Recovery of the South American sea lion (Otaria flavescens) population in northern Patagonia. Canadian Journal of Fisheries and Aquatic Sciences 61, 16811690.CrossRefGoogle Scholar
Efron, B. (2005). Bayesians, frequentists, and scientists. Journal of the American Statistical Association 100, 15.CrossRefGoogle Scholar
Evans, F. C. and Smith, F. E. (1952). The intrinsic rate of natural increase for the human louse Pediculus humanus L. American Naturalist 86, 299310.CrossRefGoogle Scholar
Ferris, G. F. (1934). Contributions towards a monograph of sucking lice. Part VII. Stanford University Publications University Series, Biological Sciences 2, 471526.Google Scholar
Ferris, G. F. (1951). The sucking lice. Memoirs of the Pacific Coast Entomological Society 1, 1320.Google Scholar
Florence, L. (1921). The hog louse, Haematopinus suis Linné; its biology, anatomy and histology. Cornell University, Agricultural Experimental Station Memoir 51, 641743.Google Scholar
Gemmill, A. W., Skørping, A. and Read, A. F. (1999). Optimal timing of first reproduction in parasitic nematodes. Journal of Evolutionary Biology 12, 11481156.CrossRefGoogle Scholar
Jacoby, W. G. (2000). Loess: a nonparametric, graphical tool for depicting relationships between variables. Electoral Studies 19, 577613.CrossRefGoogle Scholar
Kim, K. C. (1971). The sucking lice (Anoplura: Echinophthiriidae) of the Northern fur seal; descriptions and morphological adaptation. Annals of the Entomological Society of America 64, 280292.CrossRefGoogle Scholar
Kim, K. C. (1972). Louse populations of the Northern fur seal (Callorhinus ursinus). The American Journal of Veterinary Research 33, 20272036.Google ScholarPubMed
Kim, K. C. (1975). Ecology and morphological adaptation of the sucking lice (Anoplura, Echinophthiriidae) on the Northern fur seal. Rapports et Procès Verbaux des Réunions du Conseil Permanent International pour l′Exploration de la Mer 169, 504515.Google Scholar
Kim, K. C. (1987). Order Anoplura. In Immature Insects (ed. Stehr, F. W., pp. 224245. Kendal/Hunt Publishing Company, Iowa, USA.Google Scholar
Leidenberger, S., Harding, K. and Härkönen, T. (2007). Phocid seals, seal lice and heartworms: a terrestrial host–parasite system conveyed to the marine environment. Diseases of Aquatic Organisms 77, 235253.CrossRefGoogle Scholar
Loader, C. (1999). Local Regression and Likelihood. Springer-Verlag, New York, USA.CrossRefGoogle Scholar
Mehlhorn, B., Mehlhorn, H. and Plötz, J. (2002). Light and scanning electron microscopical study on Antarctophthirus ogmorhini lice from the Antarctic seal Leptonychotes weddelli. Parasitology Research 88, 651660.CrossRefGoogle Scholar
Murray, M. D. (1958). Ecology of the louse Lepidophthirus macrorhini Enderlein 1904 on the elephant seal Mirounga leonina (L.). Nature, London 182, 404405.CrossRefGoogle ScholarPubMed
Murray, M. D. (1961). The ecology of the louse Polyplax serrata (Burm.) on the mouse Mus musculus. Australian Journal of Zoology 9, 113.CrossRefGoogle Scholar
Murray, M. D. (1963). The ecology of lice on sheep. V. Influence of heavy rain on populations of Damalinia ovis (L.). Australian Journal of Zoology 11, 173182.CrossRefGoogle Scholar
Murray, M. D. (1964). Ecology of the ectoparasites of seals and penguins. In Antarctic Biology. Proceedings of the 1st S.C.A.R. Symposium on Antarctic Biology. (ed. Carrick, R., Holdgate, M and Prevost, J., pp. 241245. Paris, France.Google Scholar
Murray, M. D. (1967). Ectoparasites of Antarctic seals and birds. Proceedings of the Symposium on Pacific-Antartic Sciences, Japanese Antarctic Research Expeditions, Jare Scientific Reports. Special Issue 1, 185191.Google Scholar
Murray, M. D. (1976). Insect parasites of Antarctic seals and birds. In Marine Insects (ed. Cheng, L., pp. 7996. North Holland Publishing Company, Amsterdam.Google Scholar
Murray, M. D. (1987). Arthropods. The pelage of mammals as an environment. International Journal for Parasitology 17, 191195.CrossRefGoogle ScholarPubMed
Murray, M. D. and Gordon, G. (1969). Ecology of lice on sheep. VII. Population dynamics of Damalinia ovis (Schrank). Australian Journal of Zoology 17, 179186.CrossRefGoogle Scholar
Murray, M. D. and Nicholls, D. G. (1965). Studies on the ectoparasites of seals and penguins I. The ecology of the louse Lepidophthirus macrorhini Enderlein on the Southern Elephant seal, Mirounga leonina (L.). Australian Journal of Zoology 13, 437454.CrossRefGoogle Scholar
Murray, M. D., Smith, M. S. R. and Soucek, Z. (1965). Studies on the ectoparasites of seals and penguins II. The ecology of the louse Antarctophthirus ogmorhini Enderlein on the Weddell seal, Leptonychotes weddelli Lesson. Australian Journal of Zoology 13, 761771.CrossRefGoogle Scholar
Price, M. A. and Graham, O. H. (1997). Chewing and Sucking Lice as Parasites of Mammals and Birds. U.S. Department of Agriculture, Research Bulletin 1849.Google Scholar
Reiczigel, J. (2003). Confidence intervals for the binomial parameter: some new considerations. Statistics in Medicine 22, 611621.CrossRefGoogle ScholarPubMed
Reiczigel, J. and Rózsa, L. (2005). Quantitative Parasitology 3.0. Budapest. http://www.behav.org/qp/qp.htm.Google Scholar
Rózsa, L., Reiczigel, J. and Majoros, G. (2000). Quantifying parasites in samples of hosts. Journal of Parasitology 86, 228232.CrossRefGoogle ScholarPubMed
Schucany, W. R. (2004). Kernel smoothers: An overview of curve estimators for the first graduate course in nonparametric statistics. Statistical Science 19, 663675.CrossRefGoogle Scholar
Scott, M. T. (1950). Observations on the bionomics of Linognathus pedalis. Australian Journal of Agricultural Research 1, 465470.CrossRefGoogle Scholar
Stearns, S. C. (1992). The Evolution of Life Histories. Oxford University Press, Oxford, UK.Google Scholar
Takano-Lee, M., Edman, J. D., Mullens, B. A. and Clark, J. M. (2005). Transmission potential of the human head louse, Pediculus capitis (Anoplura: Pediculidae). International Journal of Dermatology 44, 811816.CrossRefGoogle Scholar
Thompson, P. M., Corpe, H. M. and Reid, R. J. (1998). Prevalence and intensity of the ectoparasite Echinophthirius horridus on harbour seals (Phoca vitulina): effects of host age and inter-annual variability in host food availability. Parasitology 117, 393403.CrossRefGoogle ScholarPubMed
Yorio, P., Bertellotti, M. and Quintana, F. (1995). Preference for covered nest sites and breeding success in Kelp Gulls Larus dominicanus. Marine Ornithology 23, 121128.Google Scholar