Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T13:32:11.666Z Has data issue: false hasContentIssue false

Physiological and pharmacological properties of muscle cells isolated from the flatworm Bdelloura candida (Tricladia)

Published online by Cambridge University Press:  06 April 2009

K. L. Blair
Affiliation:
Whitney Laboratory andUniversity of Florida, 9505 Ocean Shore Blvd., St Augustine, FL 32086, USA
P. A. V. Anderson
Affiliation:
Whitney Laboratory andUniversity of Florida, 9505 Ocean Shore Blvd., St Augustine, FL 32086, USA Departments of Physiology and Neuroscience, University of Florida, 9505 Ocean Shore Blvd., St Augustine, FL 32086, USA

Summary

A protocol for dissociating single muscle fibres from intact flatworms was developed. Muscle fragments of various sizes were obtained, many with their cell bodies, or myocytons, intact. Many of the fibres were spontaneously contractile, and they and others contracted in response to applications of transmitter candidates, activators of protein kinase C and the anthelmintic praziquantel. The responses were all similar to those evoked in strips of tissue. Voltage clamp recordings from the isolated muscle fibres revealed that they possess an inward Ca2+ current and 3 separate K+ currents. These results indicate that muscle fibres in Bdelloura bear receptors for neurotransmitters and that preparations of dispersed muscle fibres can be used for studying the basic physiological and pharmacological properties of platyhelminth muscle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahams, S. L., Northup, J. K. & Mansour, T. E. (1976). Adenosine cyclic 3',5'-monophosphate in the liver fluke, Fasciola hepatica. Molecular Pharmacology 12, 4958.Google ScholarPubMed
Blair, K. L. & Anderson, P. A. V. (1993). Properties of voltage-activated ionic currents in cells from the brains of the triclad flatworm Bdelloura candida. Journal of Experimental Biology 185, 267–86.CrossRefGoogle Scholar
Blair, K. L., Day, T. A., Lewis, M. C., Bennett, J. L. & Pax, R. A. (1991). Studies on muscle cells isolated from Schistosoma mansoni: a Ca2+-dependent K+ channel. Parasitology 102, 251–8.CrossRefGoogle Scholar
Blair, K. L., Bennett, J. L. & Pax, R. A. (1992). Praziquantel: physiological evidence for its site(s) of action in magnesium-paralysed Schistosoma mansoni. Parasitology 104, 5966.CrossRefGoogle ScholarPubMed
Blair, K. L., Bennett, J. L. & Pax, R. A. (1993). Serotonin and acetylcholine: further analysis of praziquantel-induced contraction of magnesium-paralysed Schistosoma mansoni. Parasitology 107, 387–95.CrossRefGoogle ScholarPubMed
Cox, G. N. (1992). Molecular and biochemical aspects of nematode collagens. Journal of Parasitology 78, 115.CrossRefGoogle ScholarPubMed
Creti, P., Capasso, A., Grasso, M. & Parisi, E. (1992). Identification of a 5-HT1A receptor positively coupled to planarian adenylate cyclase. Cell Biology International Reports 16, 427–33.CrossRefGoogle ScholarPubMed
Day, T. A., Orr, N., Bennett, J. L. & Pax, R. A. (1993). Voltage-gated currents in muscle cells of Schistosoma mansoni. Parasitology 106, 471–7.CrossRefGoogle ScholarPubMed
Day, T. A., Bennett, J. L. & Pax, R. A. (1994). Serotonin and its requirement for maintenance of contractility in muscle fibres isolated from Schistosoma mansoni. Parasitology 108, 425–32.CrossRefGoogle ScholarPubMed
Franquinet, R., Le Moinge, A. & Hanoune, J. (1978). The adenylate cyclase system of planaria Polycelis tenuis. Biochimica et Biophysica Acta 539, 8897.CrossRefGoogle ScholarPubMed
Gruber, S. A. & Ewer, D. W. (1962). Observations of the myo-neural physiology of the polyclad, Panocera gilchristi. Journal of Experimental Biology 39, 459–77.CrossRefGoogle Scholar
Hammill, O., Marty, A., Neher, E., Sakmann, R. & Sigworth, F. (1981). Improved patch-clamp techniques for high resolution current recordings from cells and cell-free patches. Pflüigers Archives 391, 85100.CrossRefGoogle Scholar
Hellmich, M. R. & Strumwasser, F. (1991). Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regulation 2, 193202.CrossRefGoogle ScholarPubMed
Holden-Dye, L. & Walker, R. J. (1993). 5-Hydroxytryptamine and motility in Fasciola hepatica. Parasitology Today 9, 339–41.CrossRefGoogle ScholarPubMed
Holman, M. A. & Anderson, P. A. V. (1991). Voltage-activated ionic currents in myoepithelial cells lsolated from the sea anemone Calliactis tricolor. Journal of Experimental Biology 161, 333–46.CrossRefGoogle Scholar
Holmes, S. K. & Fairweather, I. (1984). Fasciola hepatica: The effects of neuropharmacological agents upon in vitro motility. Experimental Parasitology 58, 194208.CrossRefGoogle ScholarPubMed
Kasschau, M. R. & Mansour, T. E. (1982). Adenylate cyclase in adults and cercariae of Schistosoma mansoni. Molecular and Biochemical Parasitology 5, 107–16.CrossRefGoogle ScholarPubMed
Maule, A. G., Halton, D. W., Allen, J. M. & Fairweather, I. (1989). Studies on motility in vitro of an ectoparasite monogenean, Diclidophora merlangi. Parasitology 98, 8593.CrossRefGoogle Scholar
Mansour, T. E. (1984). Serotonin receptors in parasitic worms. Advances in Parasitology 23, 136.Google ScholarPubMed
Mckay, D. M., Halton, D. W., Allen, J. M. & Fairweather, I. (1989). The effects of cholinergic and serotoninergic drugs on motility in vitro of Haplometra cylindracea (Trematoda: Digenea). Parasitology 99, 124–52.CrossRefGoogle ScholarPubMed
Mészáros, L. G., Bak, J. & Chu, A. (1993). Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature, London 364, 76–9.CrossRefGoogle ScholarPubMed
Moore, A. R. (1981). Reversal of contraction by means of strychnine in planarians and starfish. Journal of General Physiology 1, 97100.CrossRefGoogle Scholar
Pax, R. A., Siefker, C. & Bennett, J. L. (1984). Schistosoma mansoni: Differences in acetylcholine, dopamine, and serotonin control of circular and longitudinal parasite muscles. Experimental Parasitology 58, 314–24.CrossRefGoogle ScholarPubMed
Thompson, C. S. & Mettrick, D. F. (1989). The effects of 5-hydroxytryptamine and glutamate on muscle contraction in Hymenolepis diminuta (Cestoda). Canadian Journal of Physiology 67, 1257–62.Google Scholar
Tomosky-Sykes, T. K., Meuller, J. F. & Beuding, E. (1977). Effects of putative neurotransmitters on the motor activity of Spirometra mansonoides. Journal of Parasitology 63, 492–4.CrossRefGoogle ScholarPubMed
Ward, S. M., Allen, J. M. & Mckerr, G. (1986). Neuromuscular physiology of Grillotia erinaceus metacestodes (Cestoda: Trypanorhyncha) in vitro. Parasitology 93, 121–32.CrossRefGoogle Scholar
Yakel, J. L. (1991). The neuropeptide FMRFa both inhibits and enhances the Ca2+ current in dissociated Helix neurons via independent mechanisms. Journal of Neurophysiology 65, 1517–27.CrossRefGoogle ScholarPubMed