Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T00:22:38.542Z Has data issue: false hasContentIssue false

Parasites as biological tags in marine fisheries research: European Atlantic waters

Published online by Cambridge University Press:  10 April 2014

K. MACKENZIE*
Affiliation:
School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK
W. HEMMINGSEN
Affiliation:
Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, University of Tromsø, 9037 Tromsø, Norway
*
*Corresponding author: School of Biological Sciences (Zoology), University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK. E-mail: k.mackenzie@abdn.ac.uk

Summary

Studies of the use of parasites as biological tags for stock identification and to follow migrations of marine fish, mammals and invertebrates in European Atlantic waters are critically reviewed and evaluated. The region covered includes the North, Baltic, Barents and White Seas plus Icelandic waters, but excludes the Mediterranean and Black Seas. Each fish species or ecological group of species is treated separately. More parasite tag studies have been carried out on Atlantic herring Clupea harengus than on any other species, while cod Gadus morhua have also been the subject of many studies. Other species that have been the subjects of more than one study are: blue whiting Micromesistius poutassou, whiting Merlangius merlangus, haddock Melanogrammus aeglefinus, Norway pout Trisopterus esmarkii, horse mackerel Trachurus trachurus and mackerel Scomber scombrus. Other species are dealt with under the general headings redfishes, flatfish, tunas, anadromous fish, elasmobranchs, marine mammals and invertebrates. A final section highlights how parasites can be, and have been, misused as biological tags, and how this can be avoided. It also reviews recent developments in methodology and parasite genetics, considers the potential effects of climate change on the distributions of both hosts and parasites, and suggests host-parasite systems that should reward further research.

Type
Fisheries
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abaunza, P., Villamor, B. and Pérez, J. R. (1995). Infestation by larvae of Anisakis simplex (Nematoda, Ascaridata) in horse mackerel, Trachurus trachurus, and Atlantic mackerel, Scomber scombrus, in ICES Divisions VIIIb, VIIIc and IXa (N-NW of Spain). Scientia Marina 59, 223233.Google Scholar
Abaunza, P., Murta, A., Campbell, N., Cimmurata, R., Comesaña, A. S., Dahle, G., Gallo, E., Garcia Santamaria, M. T., Gordo, L. S., Iversen, S. A., MacKenzie, K., Magoulas, A., Mattiucci, S., Molloy, J., Nascetti, G., Pinto, A. L., Quinta, R., Ramos, P., Ruggi, A., Sanjuan, A., Santos, A. T., Stransky, C. and Zimmerman, C. (2008). Considerations on sampling strategies for an holistic approach to stock identification: the example of the HOMSIR project. Fisheries Research 89, 104113.CrossRefGoogle Scholar
Aloncle, H. and Delaporte, F. (1974). Donnees nouvelles sur le germon Thunnus alalunga Bonnaterre 1788 dans le nord-est Atlantique (Suite). Revue des Travaux de l'Iinstitut des Pêches Maritimes Nantes 38, 5102.Google Scholar
Arntz, W. E. (1972). On the occurrence of the parasitic copepod Lernaeocera branchialis in Kiel Bay and its significance as a biological tag. Archiv für Fischereiwissenschaft 23, 118127.Google Scholar
Bakay, Y. (1999). Ecological and geographical analysis of Sebastes mentella parasitic fauna in the North Atlantic (abstract). Bulletin of the Scandinavian Society for Parasitology 9, 28.Google Scholar
Balbuena, J. A. and Raga, J. A. (1994). Intestinal helminths as indicators of segregation and social structure of pods of long-finned pilot whales (Globicephalas melas) off the Faeroe Islands. Canadian Journal of Zoology 72, 443448.Google Scholar
Bamber, R. N. and Henderson, P. A. (1985). Diplostomiasis in sand smelt Atherina presbyter Cuvier from the Fleet, Dorset and its use as a population indicator. Journal of Fish Biology 26, 223229.Google Scholar
Bamber, R. N., Glover, R., Henderson, P. A. and Turnpenny, A. W. H. (1983). Diplostomiasis in the sand smelt, Atherina presbyter (Cuvier) population at Fawley Power Station. Journal of Fish Biology 23, 201210.CrossRefGoogle Scholar
Brander, K. M. (2010). Cod Gadus morhua and climate change: processes. Productivity and prediction. Journal of Fish Biology 77, 18991911.CrossRefGoogle ScholarPubMed
Bray, R. A. and MacKenzie, K. (1990). Aponurus laguncula Looss, 1907 (Digenea: Lecithasteridae): a report from herring, Clupea harengus L., in the eastern English Channel and a review of its biology. Systematic Parasitology 17, 115124.Google Scholar
Buchmann, K. (1986). Prevalence and intensity of infection of Cryptocotyle lingua (Creplin) and Diplostomum spathaceum (Rudolphi) – parasitic metacercariae of Baltic cod (Gadus morhua L.). Nordisk veterinærmedicin 38, 303307.Google Scholar
Caira, J. N., Healy, C. J. and Jensen, C. (2012). An updated look at elasmobranchs as hosts of metazoan parasites. In Biology of Sharks and their Relatives, 2nd Edn (ed. Carrier, J. C., Musick, J. A. and Heithaus, M. R.), pp. 547578. CRC Press, Boca Raton, FL, USA.Google Scholar
Calhoun, D. M., Curran, S. S., Pulis, E. E., Provaznik, J. M. and Franks, J. S. (2013). Hirudinella ventricosa (Pallas, 1774) Baird, 1853 represents a species complex based on ribosomal DNA. Systematic Parasitology 86, 197208.Google Scholar
Campbell, N., Cross, M. A., Chubb, J. C., Cunningham, C. O., Hatfield, E. M. C., and MacKenzie, K. (2007 a). Spatial and temporal variations in parasite prevalence and infracommunity structure in herring (Clupea harengus L.) caught to the west of the British Isles and in the North and Baltic Seas: implications for fisheries science. Journal of Helminthology 81, 137146.CrossRefGoogle Scholar
Campbell, N., MacKenzie, K., Zuur, A. F., Ieno, E. N. and Smith, G. M. (2007 b). Fish stock identification through neural network analysis of parasite fauna. In Analyzing Ecological Data (ed. Zuur, A. F., Ieno, E. N. and Smith, G. M.), pp. 449462. Statistics for Biology and Health, Springer Science+Health Business Media, LLC, New York, NY, USA.Google Scholar
Comiskey, P. and MacKenzie, K. (2000). Corynosoma spp. may be useful biological tags for saithe in the northern North Sea. Journal of Fish Biology 57, 525528.Google Scholar
Criscione, C. D., Cooper, B. and Blouin, M. S. (2006). Parasite genotypes identify source populations of migratory fish more accurately than host genotypes. Ecology 87, 823828.Google Scholar
Cross, M. A., Collins, C., Campbell, N., Watts, P. C., Chubb, J. C., Cunningham, C. O., Hatfield, E. M. C. and MacKenzie, K. (2007). Levels of intra-host and temporal sequence variation in large CO1 sub-units from Anisakis simplex sensu stricto (Rudolphi, 1809) (Nematoda: Anisakidae): implications for fisheries management. Marine Biology 151, 695702.Google Scholar
Dumke, A. (1988). Investigations on the occurrence of Anisakis spec. larvae within the muscle flesh from blue whiting (Micromesistius poutassou Risso) of the Northeast Atlantic. ICES M1988/H:67, p. 14.Google Scholar
Durieux, E. D. H., Bégout, M.-L., Pinet, P. and Sasal, P. (2010). Digenean metacercariae parasites as natural tags of habitat use by 0-group common sole Solea solea in nearshore coastal areas: a case study in the embayed system of the Pertuis Charentais (Bay of Biscay, France). Journal of Sea Research 64, 107117.Google Scholar
Eltinck, A., Wamerdam, M. and Heinen, A. (1986). Origin, migration and spawning of southern North Sea mackerel with respect to the overspill of Western mackerel to the North Sea stock. ICES CM1986/ H:49, p. 15.Google Scholar
Fagerholm, H.-P. and Valtonen, E. T. (1980). Metazoan parasites of migratory whitefish (Coregonus lavaretus L.) from two areas in the northern Baltic region separated by a salinity gradient. Bothnian Bay Reports 2, 6773.Google Scholar
Gaevskaya, A. V. (1984). The copepod Sphyrion lumpi (Krøyer) as a biological indicator in population studies of redfish (In Russian). In Nutrition and Differentiation of Marine Commercial Fish and Invertebrates (ed. Batalyants, K. Ya.), pp. 9099. Atlant NIRO, Kaliningrad, Russia.Google Scholar
Gaevskaya, A. V. and Kovaleva, A. A. (1980). Ecological-geographical characteristics of the parasite fauna of Trachurus trachurus trachurus in the Atlantic Ocean (In Russian). In Issledovaniya biologicheskikh resursov Atlanticheskogo Okeana (ed. Overko, S. M.), pp. 1824. Atlant NIRO, Kaliningrad, Russia.Google Scholar
Gaevskaya, A. V. and Shapiro, L. S. (1981). The question of the local nature of Baltic herring (Clupea harengus membras L.) in the Vistula lagoon of the Baltic Sea (In Russian). In Stock State and Principles of the Rational Fishery in the Atlantic, pp. 1179. Atlant NIRO, Kaliningrad, Russia.Google Scholar
Gibson, D. I. (1972). Flounder parasites as biological tags. Journal of Fish Biology 4, 19.Google Scholar
Grabda, E. (1974). The dynamics of the nematode larvae, Anisakis simplex (Rud.) invasion in the south-eastern Baltic herring (Clupea harengus L.). Acta Ichthyologica et Piscatoria 4, 321.Google Scholar
Grabda, J. (1981). Parasitic fauna of garfish Belone belone (L.) from the Pomeranian Bay (southern Baltic) and its origin. Acta Ichthyologica et Piscatoria 11, 7585.CrossRefGoogle Scholar
Harma, C., Brophy, D., Minto, C. and Clarke, M. (2012). The rise and fall of autumn-spawning herring (Clupea harengus L.) in the Celtic Sea between 1959 and 2009: temporal trends in spawning component diversity. Fisheries Research 121–122, 3142.CrossRefGoogle Scholar
Hemmingsen, W. and MacKenzie, K. (2001). The parasite fauna of the Atlantic cod, Gadus morhua L. Advances in Marine Biology 40, 180.Google Scholar
Hemmingsen, W. and MacKenzie, K. (2013). Latitudinal variations in the occurrence of some cod parasites along the west coast of Norway. Marine Biology Research 9, 431436.Google Scholar
Hemmingsen, W., Lombardo, I. and MacKenzie, K. (1991). Parasites as biological tags for cod, Gadus morhua L., in northern Norway: a pilot study. Fisheries Research 12, 365373.CrossRefGoogle Scholar
Hermida, M., Cruz, C. and Saraiva, A. (2013). Parasites as biological tags for stock identification of blackspot seabream, Pagellus bogaraveo, in Portuguese northeast Atlantic waters. Scientia Marina 77, 607615.Google Scholar
Hislop, J. R. G. and MacKenzie, K. (1976). Population studies of the whiting Merlangius merlangus (L.) of the northern North Sea. Journal du Conseil. Conseil international pour l'exploration de la mer 37, 98111.Google Scholar
Højgaard, D. P. (1980). Parasites of blue whiting, Micromesistius poutassou (Risso, 1810). Ph.D. thesis. Biological Institute, Odense University, Denmark and Zoological laboratory, University of Bergen, Norway. [In Danish].Google Scholar
Horbowy, J. and Podolska, M. (2011). The usefulness of information on infection of herring with A. simplex larvae in management of Baltic herring stock. ICES CM2011/R:07.Google Scholar
ICES (2008). Report of the Workshop on Cod and Future Climate Change. ICES CM2008/OCC:09. http://www.ices.dk/products/CMdocs/CM-2008/OCC/WKcfcc.08.pdf/.Google Scholar
Jansen, T. and Gislason, H. (2013). Population structure of Atlantic mackerel (Scomber scombrus). PLoS One 8, 110.CrossRefGoogle ScholarPubMed
Johannessen, A. N., Nøttestad, L., Fernö, A., Langørd, L. and Skaret, G. (2009). Two components of Northeast Atlantic herring within the same school during spawning: support for the existence of a metapopulation? ICES Journal of Marine Science 66, 17401748.Google Scholar
Kabata, Z. (1963). Parasites as biological tags. ICNAF Special Publication 4, 3137.Google Scholar
Kabata, Z. (1967). Whiting stocks and their gall-bladder parasites in British waters. Marine Research 2, 111.Google Scholar
Karasev, A. B. (1989). Differentiation of blue whiting populations using the parasite-indicator Myxobolus aeglefini. ICES CM1989/H:12.Google Scholar
Karasev, A. B. (1990). Ecological and geographical analysis of the northeast Atlantic blue whiting parasite fauna. In Biology and Fisheries of the Norwegian Spring Spawning Herring and Blue Whiting in the Northeast Atlantic (ed. Monstad, T.), pp. 307318. Proceedings of the 4th Soviet-Norwegian Symposium, Bergen, Norway, June 12–16, 1989. Institute of Marine Research, Bergen, Norway.Google Scholar
Karasev, A. B. (1998). On the use of parasites in studies of Arcto-Norwegian cod population structure. In Parasites and Diseases of Marine and Freshwater Fishes of the North Basin: Selected Papers (ed. Karasev, A. B.), pp. 2223. PINRO Press, Murmansk, Russia.Google Scholar
Karlsbakk, E. and Køie, M. (2012). The marine myxosporean Sigmomyxa sphaerica (Thélohan, 1895) gen. n, comb. n. (syn. Myxidium sphaericum) from garfish (Belone belone (L.)) uses the polychaete Nereis pelagica L. as invertebrate host. Parasitology Research 110, 211218.Google Scholar
Kennedy, C. R. (1977). Distribution and zoogeographical characteristics of the parasite fauna of char Salvelinus alpinus in Arctic Norway, including Spitzbergen and Jan Mayen islands. Astarte 10, 4955.Google Scholar
Kennedy, C. R. (1979). The distribution and biology of the cestode Eubothrium parvum in capelin, Mallotus villosus (Pallas) in the Barents Sea, and its use as a biological tag. Journal of Fish Biology 15, 223236.Google Scholar
Kinne, O. (ed.) (1984). Diseases of Marine Animals Vol. IV, Part I, Introduction, Pisces. Biologische Anstalt Helgoland, Helgoland, Germany.Google Scholar
Køie, M. (1981). On the morphology and life-history of Podocotyle reflexa (Creplin, 1825) Odhner, 1905, and a comparison of its developmental stages with those of P. atomon (Rudolphi, 1802) Odhner, 1905 (Trematoda, Opecoeliidae). Ophelia 20, 1743.Google Scholar
Køie, M. (1992). Life cycle and structure of the fish digenean Brachyphallus crenatus (Hemiuridae). Journal of Parasitology 78, 338343.Google Scholar
Køie, M. (1995). The life cycle and biology of Hemiurus communis Odhner, 1905 (Digenea. Hemiuridae). Parasite 2 (Suppl. 2), 195202.CrossRefGoogle Scholar
Kühlmorgen-Hille, G. (1983). Infestation with larvae of Anisakis spec. as a biological tag of herring in sub-division 22, Western Baltic Sea. ICES CM1983/J:11.Google Scholar
Kulachkova, V. G. (1977). Gyrodactylidae as indicators of local herring (Clupea harengus pallasi marisalbi) shoals in the White Sea. Parazitologicheskii Sbornik, Leningrad No. 27, pp. 2734 [In Russian].Google Scholar
Kulachkova, V. G. (1989). Parasites as tags in the biological studies of the White Sea herring (Clupea pallasi). In Parasites of Freshwater Fishes of North-west Europe. Materials of the International Symposium within the Program of the Soviet-Finnish Cooperation, 10–14 January, 1988, pp. 7380. Petrozavodsk, Russia.Google Scholar
Kusz, W. and Treder, A. (1980). Parasitic fauna of European blue whiting, Micromesisitius poutassou (Risso, 1810). Acta Ichthyologica et Piscatoria 10, 4558.CrossRefGoogle Scholar
Larsen, G., Hemmingsen, W., MacKenzie, K. and Lysne, D. A. (1997). A population study of cod, Gadus morhua L., in northern Norway using otolith structure and parasite tags. Fisheries Research 32, 1320.Google Scholar
Lubieniecki, B. (1977). The plerocercus of Grillotia erinaceus as a biological tag for haddock Melanogrammus aeglefinus in the North Sea and north-east Atlantic. Journal of Fish Biology 11, 555566.Google Scholar
Lester, R. J. G. and MacKenzie, K. (2009). The use and abuse of parasites as stock markers for fish. Fisheries Research 97, 12.Google Scholar
Lom, J. and Dykova, I. (1992). Protozoan Parasites of Fishes. Developments in Aquaculture and Fisheries Science, Vol. 26. Elsevier Science Publishers BV, Amsterdam, the Netherlands.Google Scholar
MacKenzie, K. (1979). Some parasites and diseases of blue whiting, Micromesistius poutassou (Risso) to the north and west of Scotland and at the Faroe Islands. Scottish Fisheries Research Report, No. 17.Google Scholar
MacKenzie, K. (1983). The selection of parasites for use as biological tags in population studies of bluefin tuna. Collected Volumes of Scientific Papers ICCAT 18, 834838.Google Scholar
MacKenzie, K. (1985). The use of parasites as biological tags in population studies of herring (Clupea harengus L.) in the North Sea and to the north and west of Scotland. Journal du Conseil. Conseil international pour l'exploration de la mer 42, 3364.Google Scholar
MacKenzie, K. (1987). Long-term changes in the prevalence of two helminth parasites (Cestoda: Trypanorhyncha) infecting marine fish. Journal of Fish Biology 31, 8388.Google Scholar
MacKenzie, K. (1990). Cestode parasites as biological tags for mackerel (Scomber scombrus L.) in the northeast Atlantic. Journal du Conseil international pour l'exploration de la mer 46, 155166.CrossRefGoogle Scholar
MacKenzie, K. and Kalavati, C. (1995). Species in the genus Myxidium Bütschli, 1882 (Myxosporea: Bivalvulida) parasitizing the gall bladders of gadid fish in the northeast Atlantic. Journal of Natural History 29, 851863.Google Scholar
MacKenzie, K., Campbell, N., Mattiucci, S., Ramos, P., Pinto, A. L. and Abaunza, P. (2008). Parasites as biological tags for stock identification of Atlantic horse mackerel Trachurus trachurus L. Fisheries Research 89, 136145.Google Scholar
MacKenzie, K., Collins, C., Kalavati, C. and Hemmingsen, W. (2010). Myxidium finnmarchicum n. sp. (Myxosporea: Myxidiidae) from the gall bladder of whiting Merlangius merlangus (L.) (Pisces: Teleostei) in North Norway. Zootaxa 2673, 5664.Google Scholar
Marques, J. F., Santos, M. J., Costa, J. L., Costa, M. J. and Cabral, H. N. (2005). Metazoan parasites as biological indicators of population structure of Halobatrachus didactylus on the Portuguese coast. Journal of Applied Ichthyology 21, 220224.Google Scholar
Marques, J. F., Rego, A. L., Costa, J. L., Costa, M. J., and Cabral, H. M. (2006 a). Genetic and morphologic differentiation of the Lusitanian toadfish (Halobatrachus didactylus) between estuarine and coastal areas in Portugal. Scientia Marina 70, 749758.CrossRefGoogle Scholar
Marques, J. F., Teixeira, C. M. and Cabral, H. N. (2006 b). Differentiation of commercially important flatfish populations along the Portuguese coast: evidence from morphology and parasitology. Fisheries Research 81, 293305.Google Scholar
Mattiucci, S., Abaunza, P., Ramadori, L. and Nascetti, G. (2004). Genetic identification of Anisakis larvae in European hake from Atlantic and Mediterranean waters for stock recognition. Journal of Fish Biology 65, 495510.Google Scholar
Mattiucci, S., Farina, V., Campbell, N., MacKenzie, K., Ramos, P., Pinto, A. L., Abaunza, P. and Nascetti, G. (2008). Anisakis spp. larvae (Nematoda: Anisakidae) from Atlantic horse mackerel: their genetic identification and use as biological tags for host stock characterization. Fisheries Research 89, 146151.Google Scholar
Mitenev, V. K. and Zubchenko, A. V. (1975). The parasitic fauna of the whitefish Coregonus lavaretus from some bodies of water of the Kola Peninsula. Journal of Ichthyology 15, 320324.Google Scholar
Moore, A. B. M. (2001). Metazoan parasites of the lesser-spotted dogfish Scyliorhinus canicula and their potential as stock discrimination tools. Journal of the Marine Biological Association of the United Kingdom 81, 10091013.Google Scholar
Paggi, L., Nascetti, G., Cianchi, R., Orecchia, P., Mattiucci, S., D'Amelio, S., Berland, B., Brattey, J., Smith, J. W. and Bullini, L. (1991). Genetic evidence for three species within Pseudoterranova decipiens (Nematoda, Ascaridida, Ascaridoidea) in the North Atlantic and Norwegian and Barents Seas. International Journal for Parasitology 21, 195212.Google Scholar
Paggi, L., Mattiucci, S., Gibson, D. I., Berland, B., Nascetti, G., Cianchi, R. and Bullini, L. (2000). Pseudoterranova decipiens species A and B (Nematoda, Ascaridoidea): nomenclatural designation, morphological diagnostic characters and genetic markers. Systematic Parasitology 45, 185197.Google Scholar
Pascual, S., Gonzalez, A., Arias, C. and Guerra, A. (1996). Biotic relationships of Illex coindetti and Todaropsis eblanae (Cephalopoda, Ommasterphidae) in the northeast Atlantic: evidence from parasites. Sarsia 81, 265274.Google Scholar
Perry, A. L., Low, P. J., Ellis, J. R. and Reynolds, J. D. (2005). Climate change and distribution shifts in marine fishes. Science 308, 19121915.Google Scholar
Platt, N. E. (1976). Codworm – a possible biological indicator of the degree of mixing of Greenland and Iceland cod stocks. Journal du Conseil 37, 4145.CrossRefGoogle Scholar
Podolska, M. (2009). Anisakis simplex larvae from the Baltic herring as tag organisms in biological and fisheries research. I. Baltic herring and A. simplex nematodes: the models of parasitic infection and fish migration tags [In Polish]. Wiadomasci Parazytologiczne 55, 201210.Google Scholar
Podolska, M., Horbowy, J. and Wyszynsky, M. (2006). Discrimination of Baltic herring populations with respect to Anisakis simplex larvae infection. Journal of Fish Biology 68, 12411256.Google Scholar
Polyansky, Yu. I. and Kulemina, I. V. (1963). The parasite fauna of young cod from the Barents Sea. Vestnik Leningradskogo Universiteta, Seriya Biologii 30, 174192 [In Russian].Google Scholar
Raitt, D. F. S. (1965). The stocks of Trisopterus esmarkii (Nilsson) off north-west Scotland and in the North Sea. Marine Research 1.Google Scholar
Reimer, L. W. (1970). Digene Trematoden und Cestoden der Ostseefische als natürliche Fischmarken. Parasitologische Schriftenreihe 20, 513.Google Scholar
Rodriguez-Marín, E., Barreiro, S., Montero, F. E. and Carbonell, E. (2008). Looking for skin and gill parasites as biological tags for Atlantic bluefin tuna (Thunnus thunnus). Aquatic Living Resources 21, 365371.Google Scholar
Sanmartín, M. I., Alvarez, M. F., Peris, D., Iglesias, R. and Leiro, J. (2000). Helminth parasite communities of the conger eel in the estuaries of Arousa and Muros (Galicia, north-west Spain). Journal of Fish Biology 57, 11221133.Google Scholar
Santos, M. J., Saraiva, A., Cruz, C., Eiras, J. C., Hermida, M., Ventura, C. and Soares, J. P. (2009). Use of parasites as biological tags in stock identification of the black scabbardfish, Aphanopus carbo, Lowe, 1839 (Osteichthyes: trichiuridae) from Portuguese waters. Scientia Marina 73 (S2), 5562.Google Scholar
Schmidt, J. A., Van Damme, C. J. G., Roeckmann, C. and Dickey-Collas, M. (2009). Recolonisation of spawning grounds in a recovering fish stock: recent changes in North Sea herring. Scientia Marina 73, 153157.Google Scholar
Sequeira, V., Gordo, L. S., Neves, A., Paiva, R. B., Cabral, H. N. and Marques, J. F. (2010). Macroparasites as biological tags for stock identification of the bluemouth, Helicolenus dactylopterus (Delaroche, 1809) in Portuguese waters. Fisheries Research 106, 321328.Google Scholar
Shotter, R. A. (1973). A comparison of the parasite fauna of young whiting, Odontogadus merlangus (L.) (Gadidae) from an inshore and an offshore location off the Isle of Man. Journal of Fish Biology 5, 185196.Google Scholar
Shulman, S. S. (1950). Parasites of fishes in the waters of the Latvian Republic (abstract of thesis). Trudy gel'mintologicheskie Lab. 4, 278281 [In Russian].Google Scholar
Shulman, S. S. and Shulman-Albova, R. E. (1953). Parasites of Fishes of the White Sea. Akademiya Nauk SSSR, Moscow, Russia [In Russian].Google Scholar
Smit, N. J. and Davies, A. J. (2004). The curious life-style of the parasitic stages of Gnathiid isopods. Advances in Parasitology 58, 289391.Google Scholar
Smith, J. W. (1972). The occurrence of Diclidophora esmarkii (Monogenea) on Norway pout, Trisopterus esmarkii (Nilsson, 1885) in the northern North Sea and to the north and west of Scotland. Journal du Conseil. Conseil international pour l'exploration de la mer 34, 256261.Google Scholar
Somdal, O. and Schram, T. A. (1992). Ectoparasites on Northeast Atlantic mackerel (Scomber scombrus L.) from Western and North Sea stocks. Sarsia 77, 1931.Google Scholar
Thurstan, R. H. and Roberts, C. M. (2010). Ecological meltdown in the Firth of Clyde, Scotland: two centuries of change in a coastal marine ecosystem. PLoS One 5, article no. e11767. doi: 10.1371/journal.pone.0011767.Google Scholar
Timofeev, S. F. (1997). An occurrence of the parasitic dinoflagellate Ellobiopsis chattoni (Protozoa: Mastigophora) on the copepod Calanus finmarchicus (Crustacea: Copepoda) and a possibility to use the parasite as a biological tag of local populations [In Russian]. Parazitologiya 31, 334340.Google Scholar
Van Banning, P., De Veen, J. F. and Van Leeuwen, P. I. (1978). The myxosporidian parasite Myxobolus aeglefini Auerbach, 1906, and its use as a parasitological tag for plaice of the eastern North Sea. ICES Demersal Fish Committee CM 1978/G:48.Google Scholar
Van Deurs, M. and Ramkær, K. (2007). Application of a tag parasite, Anisakis sp., indicates a common feeding migration for some genetically distinct neighbouring populations of herring, Clupea harengus . Acta Ichthyologica et Piscatoria 37, 7379.Google Scholar
Walters, V. (1980). Ectoparasites of eastern and western Atlantic Bluefin tunas. Collected Volumes of Scientific Papers ICCAT 9, 491498.Google Scholar
Wickins, J. F. and Macfarlane, I. S. (1973). Some differences in the parasite fauna of three samples of plaice (Pleuronectes platessa L.) from the southern North Sea. Journal of Fish Biology 5, 919.Google Scholar
Williams, I. C. (1963). The infestation of the redfish Sebastes marinus (L.) and S. mentella Traven (Scleroparei: Scorpaenidae) by the copepods Peniculus clavatus (Müller), Sphyrion lumpi (Krøyer) and Chondracanthus nodosus (Müller) in the eastern North Atlantic. Parasitology 53, 501525.Google Scholar