Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-29T11:40:45.103Z Has data issue: false hasContentIssue false

Morphological diversification in different trematode lineages: body size, host type, or time?

Published online by Cambridge University Press:  07 January 2009

R. POULIN*
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin9054, New Zealand
*
*Corresponding author. Tel: +64 3 479 7983. Fax: +64 3 479 7584. E-mail: robert.poulin@stonebow.otago.ac.nz

Summary

Different lineages experience different rates of phenotypic diversification, resulting in greater or lower variance in the expression of phenotypic traits among the species within a lineage. Here, morphological diversification is investigated in 14 different trematode families, based on a dataset comprising morphometric data on body size and 4 anatomical structures (oral sucker, ventral sucker, pharynx, cirrus sac) from 386 species. Three hypotheses are tested and subsequently rejected based on the empirical evidence. First, the degree of morphological variation in all traits within a trematode family, measured as the coefficient of variation among species, appears independent of the average body size of species belonging to that family. Second, patterns of morphological diversification appear similar whether endothermic or ectothermic vertebrates are used as definitive hosts. Third, phylogenetically older trematode lineages did not display greater morphological variation than younger, more derived ones, ruling out evolutionary time as an explanation. The results are consistent with developmental constraints acting on morphological diversification, since for some pairs of traits, variation in one trait is not independent of variation in another trait. More importantly, across most families, variation in body size was significantly more pronounced than variation in the relative sizes of the other morphological features. Trematode body size therefore varies widely while the general body architecture of the family is maintained. The fact that the evolution of the body plan is more conservative than that of body size suggests that the range of morphologies that can evolve in trematodes is constrained.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beldade, P., Koops, K. and Brakefield, P. M. (2002). Developmental constraints versus flexibility in morphological evolution. Nature, London 416, 844847.CrossRefGoogle ScholarPubMed
Blankespoor, H. D. (1974). Host-induced variation in Plagiorchis noblei Park, 1936 (Plagiorchiidae: Trematoda). American Midland Naturalist 92, 415433.CrossRefGoogle Scholar
Bray, R. A. and des Clers, S. A. (1992). Multivariate analyses of metrical features in Lepidapedon elongatum (Lebour, 1908) species-complex (Digenea: Lepocreadiidae) in deep and shallow water gadiform fish of NE Atlantic. Systematic Parasitology 21, 223232.CrossRefGoogle Scholar
Bush, A. O., Aho, J. M. and Kennedy, C. R. (1990). Ecological versus phylogenetic determinants of helminth parasite community richness. Evolutionary Ecology 4, 120.CrossRefGoogle Scholar
Carroll, S. B. (2001). Chance and necessity: the evolution of morphological complexity and diversity. Nature, London 409, 11021109.CrossRefGoogle ScholarPubMed
Collar, D. C., Near, T. J. and Wainwright, P. C. (2005). Comparative analysis of morphological diversity: does disparity accumulate at the same rate in two lineages of centrarchid fishes? Evolution 59, 17831794.Google ScholarPubMed
Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist 125, 115.CrossRefGoogle Scholar
Foote, M. (1997). The evolution of morphological diversity. Annual Review of Ecology and Systematics 28, 129152.CrossRefGoogle Scholar
Galaktionov, K. V. and Dobrovolskij, A. A. (2003). The Biology and Evolution of Trematodes. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Gavrilets, S. and Vose, A. (2005). Dynamic patterns of adaptive radiation. Proceedings of the National Academy of Sciences, USA 102, 1804018045.CrossRefGoogle ScholarPubMed
Gibson, D. I., Jones, A. and Bray, R. A. (2002). Keys to the Trematoda, Vol. 1. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Jones, A., Bray, R. A. and Gibson, D. I. (2005). Keys to the Trematoda, Vol. 2. CABI Publishing, Wallingford, UK.Google Scholar
Kardong, K. V. (2005). Vertebrates: Comparative Anatomy, Function, Evolution, 4th Edn.McGraw Hill, New York.Google Scholar
Knouft, J. H. and Page, L. M. (2003). The evolution of body size in extant groups of North American freshwater fishes: speciation, size distributions, and Cope's rule. American Naturalist 161, 413421.CrossRefGoogle ScholarPubMed
Kostadinova, A., Gibson, D. I., Biserkov, V. and Ivanova, R. (2000). A quantitative approach to the evaluation of the morphological variability of two echinostomes, Echinostoma miyagawai Ishii, 1932 and E. revolutum (Frolich, 1802), from Europe. Systematic Parasitology 45, 115.CrossRefGoogle Scholar
Lovette, I. J., Bermingham, E. and Ricklefs, R. E. (2002). Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proceedings of the Royal Society of London, B 269, 3742.CrossRefGoogle ScholarPubMed
Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D. and Wolpert, L. (1985). Developmental constraints and evolution. Quarterly Review of Biology 60, 265287.CrossRefGoogle Scholar
Morse, D., Stork, N. E. and Lawton, J. H. (1985). Fractal dimensions of vegetation and the distribution of arthropod body lengths. Nature, London 314, 731732.CrossRefGoogle Scholar
Nollen, P. M. (1983). The effects of crowding on adults of Philophthalmus gralli (Trematoda) grown in chickens. Journal of Parasitology 69, 196199.CrossRefGoogle ScholarPubMed
Norell, M. A. and Novacek, M. J. (1992). The fossil record and evolution: comparing cladistic and paleontological evidence for vertebrate history. Science 255, 16901693.CrossRefGoogle ScholarPubMed
Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A. and Littlewood, D. T. J. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology 33, 733755.CrossRefGoogle ScholarPubMed
O'Meara, B. C., Ané, C., Sanderson, M. J. and Wainwright, P. C. (2006). Testing for different rates of continuous trait evolution using likelihood. Evolution 60, 922933.Google ScholarPubMed
Otranto, D., Rehbein, S., Weigl, S., Cantacessi, C., Parisi, A., Lia, R. P. and Olson, P. D. (2007). Morphological and molecular differentiation between Dicrocoelium dendriticum (Rudolphi, 1819) and Dicrocoelium chinensis (Sudarikov and Ryjikov, 1951) Tang and Tang, 1978 (Platyhelminthes: Digenea). Acta Tropica 104, 9198.CrossRefGoogle Scholar
Pagel, M. (1997). Inferring evolutionary processes from phylogenies. Zoologica Scripta 26, 331348.CrossRefGoogle Scholar
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, London 410, 877884.CrossRefGoogle Scholar
Pagel, M. (2002). Modelling the evolution of continuously varying characters on phylogenetic trees. In Morphology, Shape and Phylogeny (ed. MacLeod, N. and Foley, P. L.), pp. 269286. Taylor & Francis, London, UK.CrossRefGoogle Scholar
Pérez Ponce de León, G. (1995). Host-induced morphological variability in adult Posthodiplostomum minimum (Digenea: Neodiplostomidae). Journal of Parasitology 81, 818820.CrossRefGoogle ScholarPubMed
Poulin, R. (1995). Phylogeny, ecology, and the richness of parasite communities in vertebrates. Ecological Monographs 65, 283302.CrossRefGoogle Scholar
Poulin, R. (1997). Egg production in adult trematodes: adaptation or constraint? Parasitology 114, 195204.CrossRefGoogle ScholarPubMed
Poulin, R. (2007). Evolutionary Ecology of Parasites, 2nd Edn.Princeton University Press, Princeton, USA.CrossRefGoogle Scholar
Poulin, R. and Morand, S. (1997). Parasite body size distributions: interpreting patterns of skewness. International Journal for Parasitology 27, 959964.CrossRefGoogle ScholarPubMed
Poulin, R. and Morand, S. (2004). Parasite Biodiversity. Smithsonian Institution Press, Washington, D.C., USA.Google Scholar
Ricklefs, R. E. (2004). Cladogenesis and morphological diversification in passerine birds. Nature, London 430, 338341.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (2006). Time, species, and the generation of trait variance in clades. Systematic Biology 55, 151159.CrossRefGoogle ScholarPubMed
Ritchie, M. E. and Olff, H. (1999). Spatial scaling laws yield a synthetic theory of biodiversity. Nature, London 440, 557560.CrossRefGoogle Scholar
Siemann, E., Tilman, D. and Haarstad, L. (1996). Insect species diversity, abundance and body size relationships. Nature, London 380, 704706.CrossRefGoogle Scholar
Stillson, L. L. and Platt, T. R. (2007). The crowding effect and morphometric variability in Echinostoma caproni (Digenea: Echinostomatidae) from ICR mice. Journal of Parasitology 93, 242246.CrossRefGoogle ScholarPubMed
Wainwright, P. C. (2007). Functional versus morphological diversity in macroevolution. Annual Review of Ecology, Evolution and Systematics 38, 381401.CrossRefGoogle Scholar
Warheit, K. I., Forman, J. D., Losos, J. B. and Miles, D. B. (1999). Morphological diversification and adaptive radiation: a comparison of two diverse lizard clades. Evolution 53, 12261234.CrossRefGoogle ScholarPubMed