Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-05T12:50:17.412Z Has data issue: false hasContentIssue false

Modulation of the anti-phosphorylcholine immune response during Trichinella spiralis infections in mice

Published online by Cambridge University Press:  06 April 2009

F. M. Ubeira*
Affiliation:
Departamento de Microbiología y Parasitologia, Facultad de Farmacia, Universidad de Santiago de Compostela, ES
J. Leiro
Affiliation:
Departamento de Microbiología y Parasitologia, Facultad de Farmacia, Universidad de Santiago de Compostela, ES
M. T. Santamarina
Affiliation:
Departamento de Microbiología y Parasitologia, Facultad de Farmacia, Universidad de Santiago de Compostela, ES
M. L. Sanmartin-Duran
Affiliation:
Departamento de Microbiología y Parasitologia, Facultad de Farmacia, Universidad de Santiago de Compostela, ES
*
*Reprint requests: F. M. Ubeira, Cátedra de Parasitologia, Facultad de Farmacia, Universidad de Santiago, Santiago de Compostela, Spain.

Summary

The nematode Trichinella spiralis is able to modulate the antibody response, as measured by the plaque-forming cell (PFC) technique, to three thymus-dependent (TD) antigens: (1) a heterologous antigen unrelated to the parasite (sheep red blood cells (SRBC)); (2) an antigenic fraction, rich in phosphorylcholine (PC), obtained from T. spiralis (FCpl) and (3) a heterologous antigen unrelated to the parasite, but sharing the PC epitope with the FCpl fraction (PC-KLH). During the life-cycle of the parasite in BCF1 mice, two opposing immunomodulating activities occur: (1) an immuno-potentiating activity in mice infected during the intestinal and larval migratory stages, for all three antigens, and (2) a carrier-specific immunosuppressive response in mice infected and immunized with the FCpl fraction during the muscle phase of the life-cycle. The anti-PC PFC response of these mice is dependent on the infection dose and decreases from day 35 post-infection (p.i.) until at least day 85 p.i.. The factor responsible for the stimulating effect observed during this stage is the presence of migratory larvae in the host. All the foregoing seems to indicate that T. spiralis can use specific suppression mechanisms to aid in its own survival.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, N. M. H. & Behnke, J. M. (1984). Non-specific immunodepression by larvae and adult Nematospiroides dubius. Parasitology 88, 153–62.CrossRefGoogle ScholarPubMed
Barriga, O. O. (1975). Selective immunodepression in mice by Trichinella spiralis extracts and infections. Cellular Immunology 17, 306–9.CrossRefGoogle ScholarPubMed
Barriga, O. O. (1978). Depression of the cell-mediated immunity following inoculation of Trichinella spiralis extract in the mouse. Immunology 34, 167–73.Google Scholar
Barriga, O. O. (1984). Immunomodulation by nematodes: A review. Veterinary Parasitology 14, 299320.Google Scholar
Bell, R. G., Adams, L. S. & Ogden, R. W. (1984). Trichinella spiralis: genetics of worm expulsion in inbred and Fl mice infected with different worm doses. Experimental Parasitology 58, 345–55.CrossRefGoogle Scholar
Brown, A. R. & Crandall, C. A. (1976). A phosphorylcholine idiotype related to TEPC-15 in mice infected with Ascaris suum. Journal of Immunology 116, 1105–9.Google Scholar
Campbell, W. C. & Cuckler, A. C. (1964). Effect of thiabendazole upon the enteral and parenteral phases of trichinosis in mice. Journal of Parasitology 50, 481–8.CrossRefGoogle ScholarPubMed
Chesebro, B. & Metzger, H. (1972). Affinity labelling of a PC-binding mouse myeloma protein. Biochemistry 11, 766–71.CrossRefGoogle Scholar
Cunningham, A. J. & Szenberg, A. (1968). Further improvements in the plaque technique for detecting single antibody forming cells. Immunology 14, 599606.Google ScholarPubMed
Faro, J. M., Seoane, R., Puentes, E., Ubeira, F. M. & Regueiro, B. J. (1985). Immunoresponses to Neisseria meningitidis epitopes: Primary versus secondary antiphosphorylcholine responses. Infection and Immunity 48, 428–32.CrossRefGoogle ScholarPubMed
Faubert, G. M. (1976). Depression of the plaque-forming cells to sheep red blood cells by the newborn larvae of Trichinella spiralis. Immunology 30, 485–9.Google ScholarPubMed
Faubert, G. M. (1977). Trichinella spiralis: Immunosuppression in challenge infections of Swiss mice. Experimental Parasitology 43, 336–41.Google Scholar
Festing, M. F. W. (1979). Inbreeding and it consequences, and the history of inbred strains. In Inbred Strains in Biomedical Research, pp. 320. New York: Oxford University Press.CrossRefGoogle Scholar
Herzenberg, L. A., Tokuhisa, T. & Hayakawa, K. (1983). Epitopic specific regulation. Annual Review of Immunology 1, 609–32.Google Scholar
Jones, J. F., Crandall, C. A. & Crandall, R. B. (1976). T-dependent suppression of the primary antibody response to sheep erythrocytes in mice infected with Trichinella spiralis. Cellular Immunology 27, 102–10.Google Scholar
Ljungström, I. (1983). Immunodepression in Trichinella spiralis infection. Wiadomosci Parazytologiczne 39, 402–12.Google Scholar
Ljungström, I. & Huldt, G. (1977). Effect of experimental Trichinosis on unrelated humoral and cellular-mediated immunity. Acta Pathologica and Microbiologica Scandinavica 85, 131–41.Google Scholar
Lubiniecki, A. S. & Cypess, R. H. (1975). Immunologic sequelae of Trichinella spiralis infection in mice. Effect of the antibody responses to sheep red blood cells and Japanese B encephalitis virus. Infection and Immunity 11, 1306–11.Google Scholar
Maizels, R. M., Philipp, M. & Ogilvie, B. M. (1982). Molecules on the surface of parasitic nematodes as probes of the immune response in infection. Immunological Reviews 61, 110–36.CrossRefGoogle ScholarPubMed
Martínez, A. R., Cordero del Campillo, M. & Aller, B. (1969). The anthelminthic effect of Maretin-Bayer against T. spiralis infections in rats and mice. Wiadomosci Parazytologiczne 15, 757–8.Google Scholar
Mitchell, G. F., Anders, R. F., Brown, G. V., Handman, E., Roberts-Thomson, I. C., Chapman, C. B., Forsyth, K. P., Kahl, L. P. & Cruise, K. M. (1982). Analysis of infection characteristics and antiparasite immune responses in resistant compared with susceptible hosts. Immunological Reviews 61, 137–88.Google Scholar
Monier, J. C. (1975). Antigenic competition between two sequentially acting antigens. Immunosuppressive effect of T cells in the spleen and lymph nodes of mouse. Journal of Immunology 155, 644–7.CrossRefGoogle Scholar
Nagwa, A. N., Aboul-Atta, N. A. N. & Denham, D. A. (1983). Effects of the different life-cycle stages of Trichinella spiralis on the number of IgM plaque forming cells in mice immunized with sheep red blood cells. Wiadomosci Parazytologiczne 39, 413–20.Google Scholar
Pèry, P., Petit, A., Poulain, J. & Luffau, G. (1974). Phosphorylcholine-bearing components in homogenates of nematodes. European Journal of Immunology 4, 637–9.CrossRefGoogle ScholarPubMed
Price, P. & Turner, K. J. (1984). Immunologic consequences of intestinal helminth infections. Humoral responses to ovoalbumin. Parasite Immunology 6, 499508.CrossRefGoogle Scholar
Radovich, J. & Talmage, D. W. (1967). Antigenic competition: cellular or humoral. Science 158, 512–14.Google Scholar
Sanmartín-Duraán, M. L., Santamarina, M. T. & Ubeira, F. M. (1986). Effect of clofibrate and hydrocortisone on intestinal Trichinellosis in mice. Veterinary Parasitology 21, 5560.Google Scholar
Schutze, M. P., Leclerc, C., Lolivet, M., Audibert, F. & Chedid, L. (1985). Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. Journal of Immunology 135, 2319–22.Google Scholar
Svet-Moldavsky, G. J., Shaghijan, G. S., Chernyakhovskaya, I. Y., Mkheidze, D. M., Litov-Chenko, T. A., Ozeretskovskaya, N. H. & Kadaghidze, Z. G. (1970). Inhibition of skin allograft injection in Trichinella-infected mice. Transplantation 9, 6971.Google Scholar
Ubeira, F. M., Leiro, J., Santamarina, M. T., Villa, T. G. & Sanmartín-Durán, M. L. (1987 a). Immune response to Trichinella epitopes: the antiphosphorylcholine plaque-forming cell response during the biological cycle. Parasitology 94, 543–53.CrossRefGoogle ScholarPubMed
Ubeira, F. M., Leiro, J., Seoane, R. & Regueiro, B. J. (1987 b). The antiphosphorylcholine plaque forming cell responses induced by the nematode Trichinella in BWF1 mice. Medical Microbiology and Immunology 176, 143–50.Google Scholar
Wakelin, D. (1984). Evasion of the immune response: survival within low responder individuals of the host population. Parasitology 88, 639–57.CrossRefGoogle ScholarPubMed