Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T08:12:06.206Z Has data issue: false hasContentIssue false

Lipid metabolism in golden hamsters infected with plerocercoids of Spirometra erinacei (Cestoda: Pseudophyllidea)

Published online by Cambridge University Press:  06 April 2009

T. Tsuboi
Affiliation:
Department of Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791–02, Japan
K. Hirai
Affiliation:
Department of Parasitology, Ehime University School of Medicine, Shigenobu-cho, Ehime 791–02, Japan

Summary

Golden hamsters infected with Spirometra erinacei plerocercoids develop a hypertriglyceridaemia characterized by an increase in very low-density lipoprotein. Acyl-CoA synthetase activity, the rate of fatty acid synthesis in the liver and triglyceride production studies showed that the activation and synthesis of fatty acid and production of triglyceride in plerocercoidinfected hamsters were not significantly different from the controls. Lipase activity in post-heparin plasma was found to be suppressed in plerocercoid-infected golden hamsters. The presence of plerocercoids also resulted in a significant reduction in serum thyroxine, but the hypertriglyceridaemia associated with plerocercoid infection was not reversed by injecting the infected hamsters with 2 μg/ day doses of L-thyroxine. The levels of serum immunoreactive insulin in plerocercoid-infected hamsters were not significantly different from the controls. We conclude that the hypertriglyceridaemia, associated with plerocercoid infection in hamsters, results predominantly from a suppression of triglyceride degradation, and that the suppression of lipase activity is probably not the result of hypothyroidism or the lack of insulin, but the result of secretion of growth hormone-like substances.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angus, M. G. N., Fletcher, K. A. & Maegrajth, B. G. (1971). Studies on the lipids of Plasmodium knowlesi-infected rhesus monkeys (Macaca mulatta). I. Changes in serum lipids. Annals of Tropical Medicine and Parasitology 65, 135–54.CrossRefGoogle ScholarPubMed
Bagdade, J. D., Porte, D. & Bierman, E. L. (1968). Acute insulin withdrawal and the regulation of plasma triglyceride removal in diabetic subjects. Diabetes 17, 127–32.CrossRefGoogle ScholarPubMed
Baker, N., Learn, D. B. & Bruckdorfer, K. R. (1978). Re-evaluation of lipogenesis from dietary glucose carbon in liver and carcass of mice. Journal of Lipid Research 19, 879–93.CrossRefGoogle ScholarPubMed
Bar-Tana, J., Rose, G. & Shapiro, B. (1971). The purification and properties of microsomal palmitoyl-Coenzyme A synthetase. Biochemical Journal 122, 353–62.CrossRefGoogle ScholarPubMed
Beynen, A. C., Vaartjes, W. J. & Geelen, J. H. (1979). Opposite effects of insulin and glucagon in acute hormonal control of hepatic lipogenesis. Diabetes 28, 828–35, 335–9.CrossRefGoogle ScholarPubMed
von Brand, T. (1979). Biochemistry and Physiology of Endoparasites. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Folch, J., Lees, M. & Sloanestanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Gibson, D. M. & Hubbard, D. D. (1960). Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan-diabetes. Biochemical and Biophysical Research Communications 3, 531–5.CrossRefGoogle ScholarPubMed
Gujral, S., Rajgor, N., Lovekar, C. D. & Seth, D. (1981). Serum lipid values in golden hamsters infected with Ancylostoma ceylanicum. Journal of Parasitology 67, 758–9.CrossRefGoogle ScholarPubMed
Guy, M. W. (1975). Serum and tissue fluid lipids in rabbits experimentally infected with Trypanosoma brucei. Transactions of the Royal Society of Tropical Medicine and Hygiene 69, 429.Google Scholar
Heimberg, M., Weinstein, I., Klausner, H. & Watkins, M. L. (1962). Release and uptake of triglycerides by isolated perfused rat liver. American Journal of Physiology 202, 353–8.CrossRefGoogle ScholarPubMed
Hirai, K., Nishida, H., Shiwaku, K. & Okuda, H. (1978). Studies on the plerocercoid growth factor of Spirometra erinacei (Rudolphi, 1819) with special reference to the effect on lipid mobilization in vitro. Japanese Journal of Parasitology 27, 527–33.Google Scholar
Hirai, K., Shiwaku, K., Tsuboi, T., Torii, M., Nishida, H. & Yamane, Y. (1983 a). Biological effects of Spirometra erinacei plerocercoids in several species of rodents. Zeitschrift für Parasitenkunde 69, 489–99.CrossRefGoogle ScholarPubMed
Hirai, K., Tsuboi, T. & Torii, M. (1983 b). Growth-stimulating effect of Spirometra erinacei plerocercoids in propylthiouracil-treated mice. Japanese Journal of Parasitology 32, 525–30. (In Japanese.)Google Scholar
Holt, P. R. & Dominguez, A. A. (1980). Triton-induced hyperlipidemia: a model for studies of intestinal lipoprotein production. American Journal of Physiology 238, G453–7.Google Scholar
Itaya, K. & Ui, M. (1965). Colorimetric determination of free fatty acids in biological fluids. Journal of Lipid Research 6, 1620.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Masket, B. H., Levy, R. I. & Fredrickson, D. S. (1973). The use of polyacrylamide gel electrophoresis in differentiating Type III hyperlipoproteinemia. Journal of Laboratory and Clinical Medicine 81, 794802.Google Scholar
Mueller, J. F. (1963). Parasite-induced weight gain in mice. Annals of the New York Academy of Sciences 113, 217–33.CrossRefGoogle ScholarPubMed
Mueller, J. F. (1965). Further studies on parasitic obesity in mice, deer mice, and hamsters. Journal of Parasitology 51, 523–31.CrossRefGoogle Scholar
Mueller, J. F. (1968). Growth stimulating effect of experimental sparganosis in thyroidectomized and hypophysectomized rats, and comparative activity of different species of Spirometra. Journal of Parasitology 54, 795801.CrossRefGoogle ScholarPubMed
Murase, T., Yamada, N., Ohsawa, N., Kosaka, K., Morita, S. & Yoshida, S. (1980). Decline of postheparin plasma lipoprotein lipase in acromegalic patients. Metabolism 29, 666–72.CrossRefGoogle ScholarPubMed
Murase, T., Yamada, N. & Matsuzaki, F. (1981). The in vitro effect of growth hormone on adipose tissue lipoprotein lipase in rats. Life Sciences 28, 199201.CrossRefGoogle ScholarPubMed
Nikkilä, E. A., Huttunen, J. K. & Ehnholm, C. (1977). Postheparin plasma lipoprotein lipase and hepatic lipase in diabetes mellitus: relationship to plasma triglyceride metabolism. Diabetes 26, 1121.CrossRefGoogle ScholarPubMed
Nikkilä, E. A. & Kekki, M. (1972). Plasma triglyceride metabolism in thyroid disease. Journal of Clinical Investigation 51, 2103–14.CrossRefGoogle ScholarPubMed
Nikkilä, E. A. & Pelkonen, R. (1975). Serum lipids in acromegaly. Metabolism 24, 829–38.CrossRefGoogle ScholarPubMed
Nilsson-Ehle, P., Garfinkel, A. S. & Schotz, M. C. (1980). Lipolytic enzymes and plasma lipoprotein metabolism. Annual Review of Biochemistry 49, 667–93.CrossRefGoogle ScholarPubMed
Phares, C. K. & Carroll, R. M. (1977). A lipogenic effect in intact male hamsters infected with plerocercoids of the tapeworm, Spirometra mansonoides. Journal of Parasitology 63, 690–3.CrossRefGoogle ScholarPubMed
Phares, C. K. & Carroll, R. M. (1984). Insulin-like effects of fatty acid synthesis in liver of hamsters infected with plerocercoids of the tapeworm, Spirometra mansonoides. Journal of Helminthology 58, 2530.CrossRefGoogle ScholarPubMed
Redgrave, T. G., Roberts, D. C. K. & West, C. E. (1975). Separation of plasma lipoproteins by density-gradient ultracentrifugation. Analytical Biochemistry 65, 42–9.CrossRefGoogle ScholarPubMed
Rouzer, C. A. & Cerami, A. (1980). Hypertriglyceridemia associated with Trypanosoma brucei brucei infection in rabbits: Role of defective triglyceride removal. Molecular and Biochemical Parasitology 2, 31–8.CrossRefGoogle ScholarPubMed
Shiwaku, K. & Hirai, K. (1982). Growth-promoting effect of Spirometra erinacei (Rudolphi, 1819) plerocercoids in young mice. Japanese Journal of Parasitology 31, 185–95.Google Scholar
Shiwaku, K., Hirai, K., Torii, M. & Tsuboi, T. (1983). Effects of Spirometra erinacei plerocercoids on the growth of Snell dwarf mice. Parasitology 87, 447–53.CrossRefGoogle ScholarPubMed
Steelman, S. L., Glitzer, M. S., Ostlind, D. A. & Mueller, J. F. (1971). Biological properties of the growth hormonelike factor from the plerocercoid of S. mansonoides. Recent Progress in Hormone Research 27, 97120.Google Scholar
Steffens, A. B. (1969). A method for frequent sampling of blood and continuous infusion of fluids in the rat without disturbing the animal. Physiology and Behavior 4, 833–6.CrossRefGoogle Scholar
van Tol, A. (1977). Hypertriglyceridemia in the diabetic rat. Defective removal of serum very low density lipoproteins. Atherosclerosis 26, 117–28.CrossRefGoogle Scholar