Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T09:07:35.788Z Has data issue: false hasContentIssue false

Infracommunity dynamics of chiggers (Trombiculidae) parasitic on a rodent

Published online by Cambridge University Press:  25 August 2015

KARLIEN BARNARD
Affiliation:
Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7600, South Africa
BORIS R. KRASNOV
Affiliation:
Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
LEE GOFF
Affiliation:
Department of Plant & Environmental Protection, University of Hawaii, Manoa, 3050 Maile Way, Honolulu, Hawaii 96822, USA
SONJA MATTHEE*
Affiliation:
Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7600, South Africa
*
*Corresponding author. Department of Conservation Ecology and Entomology, Stellenbosch University, Private bag X1, 7602, South Africa. E-mail: smatthee@sun.ac.za

Summary

We studied the structure of chigger mite (Trombiculidae) communities parasitic on a South African rodent, Rhabdomys pumilio. We aimed to determine whether: (a) different chigger species differ in preferences for certain body areas of a host and (b) chigger assemblages among body areas of the same host individual, are structured and if so, whether the structure of these assemblages is aggregative or segregative. Rhabdomys pumilio is parasitized by seven chigger species belonging to six genera. The three most abundant species (Leptotrombidium sp. nr. muridium, Schoutedenichia sp. and Neoschoengastia sp. A) displayed a non-random distribution across the host body, with the two most abundant species (L. sp. nr. muridium and Schoutedenichia sp.) significantly associated with the tail area. In addition, whenever non-randomness of chigger co-occurrence in the same body area was recorded, it indicated positive but not negative co-occurrences of different species. This might be due to similarity of chigger species in resource needs and strategies to avoid host defence efforts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benoit, J. B., Yoder, J. A., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E. and Denlinger, D. L. (2006). Habitat requirements of the seabird tick, Ixodes uriae (Acari: Ixodidae), from the Antarctic Peninsula in relation to water balance characteristics of eggs, non-fed and engorged stages. Journal of Comparative Physiology 10, 122127.Google Scholar
Bergstresser, P. R., Fletcher, C. R. and Streilein, J. W. (1980). Surface densities of langerhans cells in relation to rodent epiderman sites with special immunologic properties. Journal of Investigative Dermatology 74, 7780.CrossRefGoogle Scholar
Bush, A. O. and Holmes, J. C. (1986). Intestinal helminths of lesser scaup ducks: patterns of association. Canadian Journal of Zoology 64, 132141.CrossRefGoogle Scholar
Cohen, S., Greenwood, M. T. and Fowler, J. A. (1991). The louse Trinororz nnsrrinunz (Amblycera: Phthiraptera), an intermediate host of Snrconenza eutycerca (Filarioidea: Nematoda), a heartworm of swans. Medical and Veterinary Entomology 5, 101110.Google Scholar
Combes, C. (2001). Parasitism: the Ecology and Evolution of Intimate Interactions. University of Chicago Press, Chicago.Google Scholar
Daniel, M. (1961). The bionomics and developmental cycle of some chiggers (Acariformes, Trombiculidae) in the Slovak Carpathians. Ceskoslovenska Parasitologie 13, 31118.Google Scholar
Dietsch, T. (2008). A relationship between avian foraging behaviour and infestation by trombiculid larvae (Acari) in Chiapas, Mexico. Biotropica 40, 196202.Google Scholar
Dong, W., Guo, X., Qain, T. and Wu, D. (2008). Diversity of chigger mites on small mammals in the surrounding areas of Erhai Lake in Yunnan, China. Acta Entomologica Sinica 51, 12791288.Google Scholar
Ellis, R. D., Pung, O. T. and Richardson, D. J. (1999). Site selection by intestinal helminths of the Virginia opossum (Didelphis virginiana). Journal of Parasitology 85, 15.Google Scholar
Entsminger, G. L. (2012). EcoSim Professional: Null Modeling Software for Ecologists, Version 1. Acquired Intelligence Inc., Kesey-Bear, & Pinyon Publishing, Montrose, CO.Google Scholar
Foster, C. A. and Elbe, A. (1997). Lymphocyte subpopulations of the skin. In Skin Immune System (SIS): Cutaneous Immunology and Clinical Immunodermatology , 2nd Edn. (ed. Bos, J. D.), pp. 85109. CRC Press, FL, USA.Google Scholar
Furman, D. P. (1959). Feeding habits of symbiotic mesostigmatid mites of mammals in relation to pathogen-vector potentials. American Journal of Tropical Medicine and Hygiene 8, 512.Google Scholar
Goff, M. L. (1979). Host exploitation by chiggers (Acari: Trombiculidae) infesting Papua New Guinea land mammals. Pacific Insects 20, 321353.Google Scholar
Goff, M. L. (1982). New Guinea chiggers (Acari: Trombiculidae). Monographidae Biologicae 42, 545555.Google Scholar
Goldberg, S. R. and Holshuh, H. J. (1992). Ectoparasite-induced lesions in mite pockets of the Yarrpow's spiny lizard, Sceloporus jarrovii (Phrynosomatidae). Journal of Wildlife Diseases 28, 537541.CrossRefGoogle ScholarPubMed
Gotelli, N. J. (2000). Null model analysis of species co-occurrence patterns. Ecology 81, 26062621.Google Scholar
Gotelli, N. J. and McCabe, D. J. (2002). Species co-occurrence: a meta-analysis of J. M. Diamond's assembly rules model. Ecology 83, 20912096.Google Scholar
Gotelli, N. J. and Rohde, K. (2002). Co-occurrence of ectoparasites of marine fishes: a null model analyses. Ecology Letters 5, 8694.Google Scholar
Kharadov, A.V. and Chirov, P.A. (2007). Localisation of Neotrombicula sympatrica (Acariformes: Trombiculidae) on small rodents of Kyrgyzstan. Folia Entomologica Hungarica 68, 181194.Google Scholar
Krantz, G. and Walter, D. (2009). A Manual of Acarology, 3rd Edn. Texas Tech University Press, Lubbock, TX, USA.Google Scholar
Krasnov, B. R., Matthee, S., Lareschi, M., Korallo-Vinarskaya, N. P. and Vinarskie, M. V. (2010). Co-occurrence of ectoparasites on rodent hosts; null model analyses of data from three continents. Oikos 119, 120128.Google Scholar
Krasnov, B. R., Khokhlova, I. S. and Sherbrot, G. I. (2011). Aggregative structure is the rule in communities of fleas: null model analysis. Ecography 34, 751761.Google Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., Stanko, M., Morand, S. and Mouillot, D. (2014). Assembly rules of ectoparasite communities across scales: combining patterns of abiotic factors, host composition, geographic space, phylogeny and traits. Ecography 78, 3459.Google Scholar
Krasnov, B. R., Stanko, M., Khokhlova, I. S., Mošanský, L., Hawlena, H. and Morand, S. (2006 a). Aggregation and species coexistence in fleas parasitic on small mammals. Ecography 29, 159168.Google Scholar
Krasnov, B. R., Stanko, M. and Morand, S. (2006 b). Are ectoparasite communities structured? Species co-occurrence, temporal variation and null models. Journal of Animal Ecology 75, 13301339.Google Scholar
Kuhn, R. A., Ansorge, H., Godynicki, S. and Meyer, W. (2010). Hair density in the Eurasian otter Lutra lutra and the Sea otter Enhydra lutris . Acta Theriologica 55, 211222.Google Scholar
Lawrence, R. (1949). The larval trombiculid mites of Southern African vertebrates. Annals of the Natal Museum 11, 405482.Google Scholar
Lotz, J. M. and Font, W. F. (1985). Structure of enteric helminth communities in two populations of Eptesicus fuscus (Chiroptera). Canadian Journal of Zoology 103, 29692978.CrossRefGoogle Scholar
Ma, L. M. (1983). Distribution of fleas in the hair coat of the host. Acta Entomologica Sinica 26, 409412.Google Scholar
Mariana, A., Mohd Kulaimi, B., Halimaton, I., Suhaili, Z., Shahrul-Anuar, M. and Nor Zalipah, M. (2011). Acarine ectoparasites of Panti Forest Reserve in Johore, Malaysia. Asian Journal of Tropical Biomedicine 1, 15.Google Scholar
Marshall, A. G. (1981). The Ecology of Ectoparasitic Insects, Academic Press, London, UK.Google Scholar
Matthee, S., Horak, I. G., Beaucournu, J. C., Durden, L. A., Ueckermann, E. A. and Mc Geoch, M. A. (2007). Epifaunistic arthropod parasites of the four-striped mouse, Rhabdomys pumilio, in the Western Cape Province, South Africa. Journal of Parasitology 93, 4759.Google Scholar
McGrath, J. A. and Uitto, J. (2010). Anatomy and organization of human skin. In Rook's Textbook of Dermatology, 8th Edn. (ed. Burns, T., Breathnach, S., Cox, N. and Griffiths, C.), pp. 153. Wiley-Blackwell, Oxford, UK.Google Scholar
Mohr, C. (1956). Comparative infestation by ectoparasites of two native rats of Sansapor, New Guinea. American Midland Naturalist 55, 382392.Google Scholar
Mooring, M. and Samuel, W. M. (1998). Tick defence strategies in bison: the role of grooming and hair coat. Behaviour 135, 693718.Google Scholar
Morand, S., Krasnov, B. R. and Poulin, R. (2006). Micromammals and Macroparasites; from Evolutionary Ecology to Management. Springer, Tokyo.Google Scholar
Murray, M. D. (1957). The distribution of the eggs of Damalinia ovis on the sheep. Australian Journal of Zoology 5, 173182.Google Scholar
Murray, M. D. (1987). Effects of host grooming on louse populations. Parasitology Today 3, 276278.Google Scholar
Murray, M. D., Smith, M. S. R. and Soucek, Z. (1965). Studies of the ectoparasites of seals and penguins. II. The ecology of the louse Antarctophthirus ogmorhini enderlein on the Weddel seal, Leptonychotes weddelli lesson. Australian Journal of Zoology 13, 761771.Google Scholar
Nadchatram, M. (1970). Correlation of habitat, environment and colour of chiggers and their potential significance in the epidemiology of scrub typhus in Malaya. Journal of Medical Entomology 7, 131144.Google Scholar
Pilosof, S., Lareshi, M. and Krasnov, B. R. (2012). Host body microcosm and ectoparasite infracommunities: arthropod ectoparasites are not spatially segregated. Parasitology 139, 17391748.CrossRefGoogle Scholar
Poulin, R. (1999). Body size vs abundance among parasite species: positive relationships? Ecography 22, 246250.Google Scholar
Roubal, F. R. and Quartararo, N. (1992). Observations on the pigmentation in the monogeneans, Anoplodiscus spp. (family Anoplodiscidae) in different microhabitats on their sparid teleost hosts. International Journal for Parasitology 22, 459464.Google Scholar
Spears, R. E., Durden, L. A. and Hagan, D. V. (1999). Ectoparasites of Brazilian free-tailed bats with emphasis on anatomical site preferences for Chiroptonyssus robustipes (Acari: Macronyssidae). Journal of Medical Entomology 36, 481485.Google Scholar
Stone, L. and Roberts, A. (1991). Conditions for a species to gain advantage from the presence of competitors. Ecology 72, 19641972.Google Scholar
Tello, J. S., Stevens, R. D. and Dick, C. W. (2008). Patterns of species co-occurrence and density compensation: a test for interspecific competition in bat ectoparasite infracommunities. Oikos 117, 693702.Google Scholar
Teunissen, M. B., Kapsenberg, M. L. and Bos, J. D. (1997). Langerhans Cells and related dendritic Cells. In Skin Immune system (SIS): Cutaneous Immunology and Clinical Immunodermatology . 2nd Edn. (ed. Bos, J. D.), pp. 5984. CRC Press, FL, USA.Google Scholar
Tizard, I. (2013). Veterinary Immunology. 9th Edn. Elsevier, St Louis.Google Scholar
Whitaker, J. O. and Loomis, R. B. (1978). Chiggers (Acarina: Trombiculidae) from mammals of Indiana. Proceedings of the Indiana Academy of Science 88, 426434.Google Scholar
Zumpt, F. (1961). The Arthropod Parasites of Vertebrates in Africa South of the Sahara, Vol. 1, The South African Institute for Medical Research, Johannesburg.Google Scholar
Zuur, A., Leno, E., Walker, N., Saveliev, A. and Smith, G. (2009). Mixed Effects Models and Extensions in Ecology. Springer, NY, USA.Google Scholar