Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-07T15:14:26.827Z Has data issue: false hasContentIssue false

The influence of Blastocrithidia triatomae (Trypanosomatidae) on the reduviid bug Triatoma infestans: in vivo and in vitro diuresis and production of diuretic hormone

Published online by Cambridge University Press:  06 April 2009

Antonia Schnitker
Affiliation:
AFRC Unit of Insect Neurophysiology and Pharmacology, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, England
G. A. Schaub
Affiliation:
AFRC Unit of Insect Neurophysiology and Pharmacology, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, England
S. H. P. Maddrell
Affiliation:
AFRC Unit of Insect Neurophysiology and Pharmacology, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, England

Summary

The homoxenous flagellate Blastocrithidia triatomae disturbs excretion in Triatoma infestans. During the first 4 and 24 h after feeding, infected 5th instars excreted approximately a 2·5-fold smaller volume of urine. Consequently, about double the normal volume of haemolymph could be obtained from these infected bugs 24 h after feeding. Surprisingly, the in vitro secretion rates of Malpighian tubules from uninfected and infected bugs were nearly identical. In addition, the storage and release of diuretic hormone in infected bugs was sufficient to induce normal secretion rates by isolated Malpighian tubules. Therefore, the previously observed ultrastructural alterations in the upper Malpighian tubules of infected bugs do not result in a disturbed in vitro secretion, although in vivo excretion is reduced.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauer, P. G. (1984). Electron microscopical studies on Trypanosoma cruzi and other microorganisms in the reduviid vector. Memorias do Institute Oswaldo Cruz Suppl. 79, 2532.Google Scholar
Böker, C. A. & Schaub, G. A. (1984). Scanning electron microscopic studies of Trypanosoma cruzi in the rectum of its vector Triatoma infestans. Zeitschrift für Parasitenkunde 70, 459–69.Google Scholar
Bradley, T. J. & Nayar, J. K. (1984). The effect of infection with Dirofilaria immitis (dog heartworm) on fluid secretion rates in the Malpighian tubules of the mosquitoes Aedes taeniorhynchus and Anopheles quadrimaculatus. Journal of Insect Physiology 30, 737–42.Google Scholar
Bradley, T. J., Sauerman, D. M. & Nayar, J. K. (1984). Early cellular responses in the Malpighian tubules of the mosquito Aedes taeniorhynchus to infection with Dirofilaria immitis (Nematoda). Journal of Parasitology 70, 82–8.Google Scholar
Cerisola, J. A., Prado, C. E. Del, Rohwedder, R. & Bozzini, J. P. (1971). Blastocrithidia triatomae n. sp. found in Triatoma infestans from Argentina. Journal of Protozoology 18, 503–6.Google Scholar
D'Alessandro, A. (1976). Biology of Trypanosoma (Herpetosoma) rangeli Tejera, 1920. In Biology of the Kinetoplastida, vol. 1 (ed. Lumsden, W. H. R. and Evans, D. A.), pp. 327403. London: Academic Press.Google Scholar
Dolder, H. & Mello, M. L. S. (1978). Virus-like particles in the Malpighian tubes of blood-sucking Hemipterans. Cellular and Molecular Biology 23, 299310.Google Scholar
Farmer, J., Maddrell, S. H. P. & Spring, J. H. (1981). Absorption of fluid by the midgut of Rhodnius. Journal of Experimental Biology 94, 301–16.Google Scholar
Hase, A. (1932 a). Nahrungsaufnahme und Exkretionsverhaltnisse bei blutsaugenden Insekten und Gliedertieren. Die Naturwissenschaften 20, 345–9.Google Scholar
Hase, A. (1932 b). Beobachtungen an venezolanischen Triatoma-Arten, sowie zur allgemeinen Kenntnis der Familie der Triatomidae (Hemipt. Heteropt.). Zeitschrift für Parasitenkunde 4, 585651.Google Scholar
Kaddu, J. B. & Mutinga, M. J. (1984). Leishmania in Kenyan phlebotomine sandflies-II Natural infection in the Malpighian tubules of Sergentomyia garnhami and Sergentomyia antennatus. Insect Science and its Application 5, 239–43.Google Scholar
Liu, T. P. (1985). Scanning electron microscope observations on the pathological changes of Malpighian tubules in the worker honeybee, Apis mellifera, infected by Malpighamoeba mellificae. Journal of Invertebrate Pathology 46, 125–32.Google Scholar
Loughton, B. G. & Tobe, S. S. (1969). Blood volume in the African migratory locust. Canadian Journal of Zoology 47, 1333–6.Google Scholar
Maddrell, S. H. P. (1964 a). Excretion in the blood-sucking bug, Rhodnius prolixus Stål. II. The normal course of diuresis and the effect of temperature. Journal of Experimental Biology 41, 163–76.Google Scholar
Maddrell, S. H. P. (1964 b). Excretion in the blood-sucking bug, Rhodnius prolixus Stål. III. The control of the release of the diuretic hormone. Journal of Experimental Biology 41, 459–72.Google Scholar
Maddrell, S. H. P. (1966). The site of release of the diuretic hormone in Rhodnius-a. new neurohaemal organ in insects. Journal of Experimental Biology 45, 499508.Google Scholar
Maddrell, S. H. P. (1969). Secretion by the malpighian tubules of Rhodnius. The movements of ions and water. Journal of Experimental Biology 51, 7197.Google Scholar
Maddrell, S. H. P. (1980). Bioassay of diuretic hormone in Rhodnius. In Neurohormonal Techniques in Insects (ed. Miller, T. A.), pp. 8190. Berlin: Springer-Verlag.Google Scholar
Maddrell, S. H. P. & Gardiner, B. O. C. (1976). Diuretic hormone in adult Rhodnius prolixus; total store and speed of release. Physiological Entomology 1, 265–9.Google Scholar
O'Donnell, M. J., Maddrell, S. H. P. & Gardiner, B. O. C. (1983). Transport of uric acid by the Malpighian tubules of Rhodnius prolixus and other insects. Journal of Experimental Biology 103, 169–84.Google Scholar
Ormieres, R. & Manier, J.-F. (1973). Observations sur Nephridiophaga forficulae (Leger, 1909) parasite des tubes de Malpighi de Forficula auricularia L. Annales de Parasitologie Humaine et Comparée, 48, 110.Google Scholar
Reichenow, E. (1934). Machadoella triatomae, n.g., n.sp., eine Schizogregarine aus Triatoma dimidiata. Archiv für Protistenkunde 84, 431–45.Google Scholar
Rowton, E. R., Lushbaugh, W. B. & Mcghee, R. B. (1981). Ultrastructure of the flagellar apparatus and attachment of Herpetomonas ampelophilae in the gut and Malpighian tubules of Drosophila melanogaster. Journal of Protozoology 28, 297301.CrossRefGoogle Scholar
Schaub, G. A. (1980). Studies on the pathogenicity of Blastocrithidia triatomae (Trypanosomatidae) for Triatoma infestans and Rhodnius prolixus (Reduviidae) after coprophagic infection. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, I. Abteilung Referate 267, 290–1.Google Scholar
Schaub, G. A. & Böker, C. (1986). Scanning electron microscopic studies of Blastocrithidia triatomae (Trypanosomatidae) in the rectum of Triatoma infestans (Reduviidae). Journal of Protozoology 33, 266–70.CrossRefGoogle Scholar
Schaub, G. A. & Jensen, C. (1985). Zur biologischen Bekämpfung einer der grossen Tropenparasitosen der Chagas-Krankheit, mit dem Flagellaten Blastocrithidia triatomae. Verhandlungen der Deutschen Zoologischen Gesellschaft 78, 190.Google Scholar
Shaw, J. J. (1981). The behaviour of Endotrypanum schaudinni (Kinetoplastida: Trypanosomatidae) in three species of laboratory-bred neotropical sandflies (Diptera: Psychodidae) and its influence on the classification of the genus Leishmania. In Parasitological Topics (ed. Canning, E. U.), pp. 232241. Lawrence: Allen Press.Google Scholar
Watkins, R. (1971). Trypanosoma rangeli: effect on excretion in Rhodnius prolixus. Journal of Invertebrate Pathology 17, 6771.Google Scholar
Wigglesworth, V. B. (1931). The physiology of excretion in a blood-sucking insect, Rhodnius prolixus (Hemiptera, Reduviidae). I. Composition of the urine. Journal of Experimental Biology 8, 411–27.Google Scholar