Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-29T03:37:29.189Z Has data issue: false hasContentIssue false

Identification of Toxoplasma gondii antigens associated with different types of infection by serum antibody profiling

Published online by Cambridge University Press:  14 January 2015

JIIN FELGNER*
Affiliation:
Antigen Discovery Inc., Irvine, California 92618, USA
SILVIA JUAREZ
Affiliation:
University of California Irvine, School of Medicine, Irvine, California 92697, USA
CHRIS HUNG
Affiliation:
University of California Irvine, School of Medicine, Irvine, California 92697, USA
LI LIANG
Affiliation:
University of California Irvine, School of Medicine, Irvine, California 92697, USA
AARTI JAIN
Affiliation:
University of California Irvine, School of Medicine, Irvine, California 92697, USA
MERT DÖŞKAYA
Affiliation:
Department of Parasitology, Ege University Medical School, Bornova/İzmir 35100, Turkey
PHILIP L. FELGNER
Affiliation:
University of California Irvine, School of Medicine, Irvine, California 92697, USA
AYŞE CANER
Affiliation:
Department of Parasitology, Ege University Medical School, Bornova/İzmir 35100, Turkey
YÜKSEL GÜRÜZ
Affiliation:
Department of Parasitology, Ege University Medical School, Bornova/İzmir 35100, Turkey
D. HUW DAVIES*
Affiliation:
Antigen Discovery Inc., Irvine, California 92618, USA University of California Irvine, School of Medicine, Irvine, California 92697, USA
*
*Corresponding author. Department of Medicine, Division of Infectious Diseases, University of California Irvine, Rm 376D Med Surge II, Irvine, California 92697, USA. E-mail: ddavies@uci.edu
*Corresponding author. Department of Medicine, Division of Infectious Diseases, University of California Irvine, Rm 376D Med Surge II, Irvine, California 92697, USA. E-mail: ddavies@uci.edu

Summary

Acquisition of acute toxoplasmosis during the first trimester of pregnancy can have catastrophic consequences for the foetus. Diagnosis is routinely based on the detection of maternal Toxoplasma gondii – antibodies using whole parasite extracts as detection antigen. While such assays are sensitive, they show no specificity for the stage of infection. We hypothesized diagnosis might be improved using recombinant antigens for detection, particularly if antibodies to certain antigen(s) were associated with early or late stages of infection. To address this, protein microarrays comprising 1513 T. gondii exon products were probed with well-characterized sera from seronegative (‘N’) controls, and acute (‘A’), chronic/IgM-persisting (‘C/M’) and chronic (‘C’) toxoplasmosis cases from Turkey. Three reactive exon products recognized preferentially in A infections, and three recognized preferentially in C/M infections, were expressed in Escherichia coli and tested for discrimination in IgG ELISAs. The best discriminators were exon 1 of TGME49_086450 (GRA5) which detected C/M infections with 70·6% sensitivity and 81·8% specificity, and exon 6 of TGME49_095700 (ubiquitin transferase domain-containing protein) which detected A infections with 84·8% sensitivity and 82·4% specificity. Overall, the data support a recombinant protein approach for the development of improved serodiagnostic tests for toxoplasmosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B 57, 289300.Google Scholar
Bobic, B., Sibalic, D. and Djurkovic-Djakovic, O. (1991). High levels of IgM antibodies specific for Toxoplasma gondii in pregnancy 12 years after primary toxoplasma infection. Case report. Gynecology and Obstetric Investigation 31, 182184.Google ScholarPubMed
Can, H., Doskaya, M., Ajzenberg, D., Ozdemir, H. G., Caner, A., Iz, S. G., Doskaya, A. D., Atalay, E., Cetinkaya, C., Urgen, S., Karacali, S., Un, C., Darde, M. L. and Guruz, Y. (2014). Genetic characterization of Toxoplasma gondii isolates and toxoplasmosis seroprevalence in stray cats of Izmir, Turkey. PLoS ONE 9, e104930.CrossRefGoogle ScholarPubMed
Cesbron-Delauw, M. F. (1994). Dense-granule organelles of Toxoplasma gondii: their role in the host-parasite relationship. Parasitology Today 10, 293296.CrossRefGoogle ScholarPubMed
Cesbron-Delauw, M. F., Guy, B., Torpier, G., Pierce, R. J., Lenzen, G., Cesbron, J. Y., Charif, H., Lepage, P., Darcy, F., Lecocq, J. P. and Capron, A. (1989). Molecular characterization of a 23-kilodalton major antigen secreted by Toxoplasma gondii . Proceedings of National Academy of Science of the United States of America 86, 75377541.CrossRefGoogle ScholarPubMed
Cleary, M. D., Singh, U., Blader, I. J., Brewer, J. L. and Boothroyd, J. C. (2002). Toxoplasma gondii asexual development: identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryotic Cell 1, 329340.CrossRefGoogle ScholarPubMed
Curdt, I., Praast, G., Sickinger, E., Schultess, J., Herold, I., Braun, H. B., Bernhardt, S., Maine, G. T., Smith, D. D., Hsu, S., Christ, H. M., Pucci, D., Hausmann, M. and Herzogenrath, J. (2009). Development of fully automated determination of marker-specific immunoglobulin G (IgG) avidity based on the avidity competition assay format: application for Abbott Architect cytomegalovirus and Toxo IgG Avidity assays. Journal of Clinical Microbiology 47, 603613.CrossRefGoogle ScholarPubMed
Doganci, L., Tanyuksel, M., Araz, E. R., Besirbellioglu, B. A., Erdem, U., Ozoguz, C. A., Yucel, N. and Ciftcioglu, A. (2006). A probable outbreak of toxoplasmosis among boarding school students in Turkey. Clinical Microbiology and Infection 12, 672674.CrossRefGoogle ScholarPubMed
Doskaya, M., Caner, A., Ajzenberg, D., Degirmenci, A., Darde, M. L., Can, H., Erdogan, D. D., Korkmaz, M., Uner, A., Gungor, C., Altintas, K. and Guruz, Y. (2013). Isolation of Toxoplasma gondii strains similar to Africa 1 genotype in Turkey. Parasitology International 62, 471474.CrossRefGoogle ScholarPubMed
Doskaya, M., Caner, A., Can, H., Gulce Iz, S., Gedik, Y., Doskaya, A. D., Kalantari-Dehaghi, M. and Guruz, Y. (2014). Diagnostic value of a Rec-ELISA using Toxoplasma gondii recombinant SporoSAG, BAG1, and GRA1 proteins in murine models infected orally with tissue cysts and oocysts. PLoS ONE 9, e108329.CrossRefGoogle ScholarPubMed
Engvall, E. and Perlmann, P. (1971). Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8, 871874.CrossRefGoogle ScholarPubMed
Ferrandiz, J., Mercier, C., Wallon, M., Picot, S., Cesbron-Delauw, M. F. and Peyron, F. (2004). Limited value of assays using detection of immunoglobulin G antibodies to the two recombinant dense granule antigens, GRA1 and GRA6 Nt of Toxoplasma gondii, for distinguishing between acute and chronic infections in pregnant women. Clinical and Diagnostic Laboratory Immunology 11, 10161021.Google Scholar
Francis, J. M., Payne, R. A. and Joynson, D. H. (1988). Rapid indirect enzyme linked immunosorbent assay (ELISA) for detecting antitoxoplasma IgG: comparison with dye test. Journal of Clinical Pathology 41, 802805.CrossRefGoogle ScholarPubMed
Fricker-Hidalgo, H., Saddoux, C., Suchel-Jambon, A. S., Romand, S., Foussadier, A., Pelloux, H. and Thulliez, P. (2006). New Vidas assay for Toxoplasma-specific IgG avidity: evaluation on 603 sera. Diagnostic Microbiology and Infectious Disease 56, 167172.CrossRefGoogle ScholarPubMed
Fulton, J. D. and Voller, A. (1964). Evaluation of immunofluorescent and direct agglutination methods for detection of specific toxoplasma antibodies. British Medical Journal 2, 11731175.CrossRefGoogle ScholarPubMed
Gatkowska, J., Hiszczynska-Sawicka, E., Kur, J., Holec, L. and Dlugonska, H. (2006). Toxoplasma gondii: an evaluation of diagnostic value of recombinant antigens in a murine model. Experimental Parasitology 114, 220227.CrossRefGoogle ScholarPubMed
Gorgievski-Hrisoho, M., Germann, D. and Matter, L. (1996). Diagnostic implications of kinetics of immunoglobulin M and A antibody responses to Toxoplasma gondii . Journal of Clinical Microbiology 34, 15061511.CrossRefGoogle Scholar
Gross, U., Holpert, M. and Goebel, S. (2004). Impact of stage differentiation on diagnosis of toxoplasmosis. Annali dell'Istituto Superiore di Sanita 40, 6570.Google ScholarPubMed
Guruz, A. Y., Ok, U. Z. and Korkmaz, M. (1996). Assessment of latex indirect agglutination test (Toxolatex Fumouze) for the detection of Toxoplasma specific antibodies in human sera in Turkey. Journal of the Egyptian Society of Parasitology 26, 367374.Google ScholarPubMed
Hedman, K., Lappalainen, M., Seppaia, I. and Makela, O. (1989). Recent primary toxoplasma infection indicated by a low avidity of specific IgG. Journal of Infectious Disease 159, 736740.CrossRefGoogle ScholarPubMed
Hedman, K., Lappalainen, M., Soderlund, M. and Hedman, L. (1993). Avidity of IgG in serodiagnosis of infectious diseases. Reviews in Medical Microbiology 4, 123129.CrossRefGoogle Scholar
Hermanson, G., Chun, S., Felgner, J., Tan, X., Pablo, J., Nakajima-Sasaki, R., Molina, D. M., Felgner, P. L., Liang, X. and Davies, D. H. (2011). Measurement of antibody responses to Modified Vaccinia virus Ankara (MVA) and Dryvax((R)) using proteome microarrays and development of recombinant protein ELISAs. Vaccine 30, 614625.CrossRefGoogle Scholar
Hermanson, G., Chun, S., Felgner, J., Tan, X., Pablo, J., Nakajima-Sasaki, R., Molina, D. M., Felgner, P. L., Liang, X. and Davies, D. H. (2012). Measurement of antibody responses to Modified Vaccinia virus Ankara (MVA) and Dryvax((R)) using proteome microarrays and development of recombinant protein ELISAs. Vaccine 30, 614625.CrossRefGoogle Scholar
Holec-Gasior, L. (2013). Toxoplasma gondii recombinant antigens as tools for serodiagnosis of human toxoplasmosis: current status of studies. Clinical Vaccine Immunology 20, 13431351.CrossRefGoogle ScholarPubMed
Joynson, D. H., Payne, R. A. and Rawal, B. K. (1990). Potential role of IgG avidity for diagnosing toxoplasmosis. Journal of Clinical Pathology 43, 10321033.CrossRefGoogle ScholarPubMed
Kotresha, D. and Noordin, R. (2010). Recombinant proteins in the diagnosis of toxoplasmosis. APMIS 118, 529542.CrossRefGoogle ScholarPubMed
Lappalainen, M. and Hedman, K. (2004). Serodiagnosis of toxoplasmosis. The impact of measurement of IgG avidity. Annali dell'Istituto Superiore di Sanita 40, 8188.Google ScholarPubMed
Lefevre-Pettazzoni, M., Le Cam, S., Wallon, M. and Peyron, F. (2006). Delayed maturation of immunoglobulin G avidity: implication for the diagnosis of toxoplasmosis in pregnant women. European Journal of Clinical Microbiology and Infectious Disease 25, 687693.CrossRefGoogle ScholarPubMed
Liang, L., Doskaya, M., Juarez, S., Caner, A., Jasinskas, A., Tan, X., Hajagos, B. E., Bradley, P. J., Korkmaz, M., Guruz, Y., Felgner, P. L. and Davies, D. H. (2011). Identification of potential serodiagnostic and subunit vaccine antigens by antibody profiling of toxoplasmosis cases in Turkey. Molecular Cell Proteomics 10, M110 006916.CrossRefGoogle ScholarPubMed
Pappas, G., Roussos, N. and Falagas, M. E. (2009). Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. International Journal of Parasitology 39, 13851394.CrossRefGoogle ScholarPubMed
Payne, R. A., Joynson, D. H., Balfour, A. H., Harford, J. P., Fleck, D. G., Mythen, M. and Saunders, R. J. (1987). Public Health Laboratory Service enzyme linked immunosorbent assay for detecting Toxoplasma specific IgM antibody. Journal of Clinical Pathology 40, 276281.CrossRefGoogle ScholarPubMed
Petersen, E., Borobio, M. V., Guy, E., Liesenfeld, O., Meroni, V., Naessens, A., Spranzi, E. and Thulliez, P. (2005). European multicenter study of the LIAISON automated diagnostic system for determination of Toxoplasma gondii-specific immunoglobulin G (IgG) and IgM and the IgG avidity index. Journal of Clinical Microbiology 43, 15701574.CrossRefGoogle ScholarPubMed
Pietkiewicz, H., Hiszczynska-Sawicka, E., Kur, J., Petersen, E., Nielsen, H. V., Stankiewicz, M., Andrzejewska, I. and Myjak, P. (2004). Usefulness of Toxoplasma gondii-specific recombinant antigens in serodiagnosis of human toxoplasmosis. Journal of Clinical Microbiology 42, 17791781.CrossRefGoogle ScholarPubMed
Possenti, A., Fratini, F., Fantozzi, L., Pozio, E., Dubey, J. P., Ponzi, M., Pizzi, E. and Spano, F. (2013). Global proteomic analysis of the oocyst/sporozoite of Toxoplasma gondii reveals commitment to a host-independent lifestyle. BMC Genomics 14, 183.CrossRefGoogle ScholarPubMed
Schisterman, E. F., Faraggi, D., Reiser, B. and Hu, J. (2008). Youden Index and the optimal threshold for markers with mass at zero. Statistics in Medicine 27, 297315.CrossRefGoogle ScholarPubMed
Schisterman, E. F., Perkins, N. J., Liu, A. and Bondell, H. (2005). Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology 16, 7381.CrossRefGoogle ScholarPubMed
Sensini, A. (2006). Toxoplasma gondii infection in pregnancy: opportunities and pitfalls of serological diagnosis. Clinical Microbiology and Infection 12, 504512.CrossRefGoogle ScholarPubMed
Studier, F. W. (2005). Protein production by auto-induction in high density shaking cultures. Protein Experimental Purification 41, 207234.CrossRefGoogle ScholarPubMed
Suzuki, Y., Sa, Q., Gehman, M. and Ochiai, E. (2011). Interferon-gamma- and perforin-mediated immune responses for resistance against Toxoplasma gondii in the brain. Expert Reviews in Molecular Medicine 13, e31.CrossRefGoogle ScholarPubMed
Tilley, M., Fichera, M. E., Jerome, M. E., Roos, D. S. and White, M. W. (1997). Toxoplasma gondii sporozoites form a transient parasitophorous vacuole that is impermeable and contains only a subset of dense-granule proteins. Infectious Immunology 65, 45984605.CrossRefGoogle Scholar
van Loon, A. M., van der Logt, J. T., Heessen, F. W. and van der Veen, J. (1983). Enzyme-linked immunosorbent assay that uses labeled antigen for detection of immunoglobulin M and A antibodies in toxoplasmosis: comparison with indirect immunofluorescence and double-sandwich enzyme-linked immunosorbent assay. Journal of Clinical Microbiology 17, 9971004.CrossRefGoogle Scholar
Villard, O., Breit, L., Cimon, B., Franck, J., Fricker-Hidalgo, H., Godineau, N., Houze, S., Paris, L., Pelloux, H., Villena, I. and Candolfi, E. (2013). Comparison of four commercially available avidity tests for Toxoplasma gondii-specific IgG antibodies. Clinical Vaccine Immunology 20, 197204.CrossRefGoogle ScholarPubMed
Voller, A. (1964). Fluorescent antibody methods and their use in malaria research. Bull World Health Organization 30, 343354.Google ScholarPubMed
Voller, A., Bidwell, D. E., Bartlett, A., Fleck, D. G., Perkins, M. and Oladehin, B. (1976). A microplate enzyme-immunoassay for toxoplasma antibody. Journal of Clinical Pathology 29, 150153.CrossRefGoogle ScholarPubMed