Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-08T01:22:22.832Z Has data issue: false hasContentIssue false

Identification and molecular characterization of numerous Histomonas meleagridis proteins using a cDNA library

Published online by Cambridge University Press:  21 January 2009

I. BILIC
Affiliation:
Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
M. LEBERL
Affiliation:
Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
M. HESS*
Affiliation:
Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
*
*Corresponding author. Tel: +43 1250775150. Fax: +43 1250775192. E-mail: Michael.Hess@vu-wien.ac.at

Summary

Histomonas meleagridis is a protozoan parasite of various galliform birds causing a type of enterohepatitis termed histomonosis or ‘blackhead disease’. Due to the ban of chemotherapeutic substances and an increase in free-range poultry production, histomonosis is currently a re-emerging disease. So far limited molecular knowledge is available. In the present work, mRNAs coding for antigenic proteins of H. meleagridis were identified. For this purpose, a cDNA expression library was constructed from a mono-eukaryotic culture of H. meleagridis. The library was screened with polyclonal rabbit serum raised against purified H. meleagridis trophozoites. Polyclonal rabbit serum specifically recognized the same major H. meleagridis antigens as chicken and turkey sera originating from animal trials, but displayed a significantly lower bacteria-dependent background signal. After 2 rounds of screening, a total of 95 positive clones were sequenced. Bioinformatics analyses were performed on nucleotide and deduced amino acid sequences, identifying 37 unique clones. Based on the homology to other protozoan parasites, mostly Trichomonas vaginalis, the clones were grouped according to functional aspects: structural proteins, possible surface proteins, oxygen reducing proteins, ribosomal proteins, protein kinases and various other intracellular proteins.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addis, M. F., Rappelli, P., Pinto De Andrade, A. M., Rita, F. M., Colombo, M. M., Cappuccinelli, P. and Fiori, P. L. (1999). Identification of Trichomonas vaginalis alpha-actinin as the most common immunogen recognized by sera of women exposed to the parasite. The Journal of Infectious Diseases 180, 17271730.Google Scholar
Alderete, J. F., Millsap, K. W., Lehker, M. W. and Benchimol, M. (2001). Enzymes on microbial pathogens and Trichomonas vaginalis: molecular mimicry and functional diversity. Cellular Microbiology 3, 359370.Google Scholar
Alderete, J. F., Newton, E., Dennis, C. and Neale, K. A. (1991 a). Antibody in sera of patients infected with Trichomonas vaginalis is to trichomonad proteinases. Genitourinary Medicine 67, 331334.Google Scholar
Alderete, J. F., Newton, E., Dennis, C. and Neale, K. A. (1991 b). The vagina of women infected with Trichomonas vaginalis has numerous proteinases and antibody to trichomonad proteinases. Genitourinary Medicine 67, 469474.Google Scholar
Beanan, M. J. and Bailey, G. B. (1995). The primary structure of an Entamoeba histolytica enolase. Molecular and Biochemical Parasitology 69, 119121.Google Scholar
Bishop, A. (1938). Histomonas meleagridis in domestic fowls (Gallus gallus). Cultivation and experimental infection. Parasitology 30, 181194.Google Scholar
Bricheux, G., Coffe, G., Pradel, N. and Brugerolle, G. (1998). Evidence for an uncommon alpha-actinin protein in Trichomonas vaginalis. Molecular and Biochemical Parasitology 95, 241249.Google Scholar
Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Wortman, J. R., Bidwell, S. L., Alsmark, U. C., Besteiro, S., Sicheritz-Ponten, T., Noel, C. J., Dacks, J. B., Foster, P. G., Simillion, C., Van de, P. Y., Miranda-Saavedra, D., Barton, G. J., Westrop, G. D., Muller, S., Dessi, D., Fiori, P. L., Ren, Q., Paulsen, I., Zhang, H., Bastida-Corcuera, F. D., Simoes-Barbosa, A., Brown, M. T., Hayes, R. D., Mukherjee, M., Okumura, C. Y., Schneider, R., Smith, A. J., Vanacova, S., Villalvazo, M., Haas, B. J., Pertea, M., Feldblyum, T. V., Utterback, T. R., Shu, C. L., Osoegawa, K., de Jong, P. J., Hrdy, I., Horvathova, L., Zubacova, Z., Dolezal, P., Malik, S. B., Logsdon, J. M. Jr., Henze, K., Gupta, A., Wang, C. C., Dunne, R. L., Upcroft, J. A., Upcroft, P., White, O., Salzberg, S. L., Tang, P., Chiu, C. H., Lee, Y. S., Embley, T. M., Coombs, G. H., Mottram, J. C., Tachezy, J., Fraser-Liggett, C. M. and Johnson, P. J. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315, 207212.CrossRefGoogle ScholarPubMed
Carrero, J. C., Petrossian, P., Acosta, E., Sanchez-Zerpa, M., Ortiz-Ortiz, L. and Laclette, J. P. (2000). Cloning and characterization of Entamoeba histolytica antigens recognized by human secretory IgA antibodies. Parasitology Research 86, 330334.CrossRefGoogle ScholarPubMed
Chaudhry, O. A. and Petri, W. A. Jr. (2005). Vaccine prospects for amebiasis. Expert Review of Vaccines 4, 657668.Google Scholar
Coombs, G. H., Westrop, G. D., Suchan, P., Puzova, G., Hirt, R. P., Embley, T. M., Mottram, J. C. and Muller, S. (2004). The amitochondriate eukaryote Trichomonas vaginalis contains a divergent thioredoxin-linked peroxiredoxin antioxidant system. Journal of Biological Chemistry 279, 52495256.Google Scholar
De Meester, F., Bracha, R., Huber, M., Keren, Z., Rozenblatt, S. and Mirelman, D. (1991). Cloning and characterization of an unusual elongation factor-1 alpha cDNA from Entamoeba histolytica. Molecular and Biochemical Parasitology 44, 2332.CrossRefGoogle ScholarPubMed
Dolezal, P., Vanacova, S., Tachezy, J. and Hrdy, I. (2004). Malic enzymes of Trichomonas vaginalis: two enzyme families, two distinct origins. Gene 329, 8192.Google Scholar
Ellis, J. E., Yarlett, N., Cole, D., Humphreys, M. J. and Lloyd, D. (1994). Antioxidant defences in the microaerophilic protozoan Trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiology 140, 24892494.CrossRefGoogle ScholarPubMed
Engbring, J. A., O'Brien, J. L. and Alderete, J. F. (1996). Trichomonas vaginalis adhesin proteins display molecular mimicry to metabolic enzymes. Advances in Experimental Medicine and Biology 408, 207223.CrossRefGoogle ScholarPubMed
Fiori, P. L., Rappelli, P. and Addis, M. F. (1999). The flagellated parasite Trichomonas vaginalis: new insights into cytopathogenicity mechanisms. Microbes and Infection 1, 149156.CrossRefGoogle ScholarPubMed
Flohe, L., Hecht, H. J. and Steinert, P. (1999). Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radical Biology and Medicine 27, 966984.Google Scholar
Gerbod, D., Edgcomb, V. P., Noel, C., Zenner, L., Wintjens, R., Delgado-Viscogliosi, P., Holder, M. E., Sogin, M. L. and Viscogliosi, E. (2001). Phylogenetic position of the trichomonad parasite of turkeys, Histomonas meleagridis (Smith) Tyzzer, inferred from small subunit rRNA sequence. Journal of Eukaryotic Microbiology 48, 498504.CrossRefGoogle ScholarPubMed
Guillen, N. (1996). Role of signalling and cytoskeletal rearrangements in the pathogenesis of Entamoeba histolytica. Trends in Microbiology 4, 191197.Google Scholar
Hess, M., Grabensteiner, E. and Liebhart, D. (2006 a). Rapid transmission of the protozoan parasite Histomonas meleagridis in turkeys and specific pathogen free chickens following cloacal infection with a mono-eukaryotic culture. Avian Pathology 35, 280285.Google Scholar
Hess, M., Kolbe, T., Grabensteiner, E. and Prosl, H. (2006 b). Clonal cultures of Histomonas meleagridis, Tetratrichomonas gallinarum and a Blastocystis sp. established through micromanipulation. Parasitology 133, 547554.CrossRefGoogle Scholar
Hess, M., Liebhart, D., Grabensteiner, E. and Singh, A. (2008). Cloned Histomonas meleagridis passaged in vitro resulted in reduced pathogenicity and is capable of protecting turkeys from histomonosis. Vaccine 26, 41874199.Google Scholar
Hirt, R. P., Noel, C. J., Sicheritz-Ponten, T., Tachezy, J. and Fiori, P. L. (2007). Trichomonas vaginalis surface proteins: a view from the genome. Trends in Parasitology 23, 540547.Google Scholar
Honigberg, B. M. and Bennett, C. J. (1971). Lightmicroscopic observations on structure and division of Histomonas meleagridis (Smith). Journal of Protozoology 18, 687700.Google Scholar
Jeffery, C. J. (1999). Moonlighting proteins. Trends in Biochemical Sciences 24, 811.CrossRefGoogle ScholarPubMed
Kucknoor, A. S., Mundodi, V. and Alderete, J. F. (2007). The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cellular Microbiology 9, 25862597.CrossRefGoogle ScholarPubMed
Lund, E. E., Augustine, P. C. and Chute, A. M. (1967). Histomonas meleagridis after one thousand in vitro passages. Journal of Protozoology 14, 349351.Google Scholar
Mazet, M., Diogon, M., Alderete, J. F., Vivares, C. P. and Delbac, F. (2008). First molecular characterisation of hydrogenosomes in the protozoan parasite Histomonas meleagridis. International Journal for Parasitology 38, 177190.Google Scholar
McDougald, L. R. (2005). Blackhead disease (histomoniasis) in poultry: a critical review. Avian Diseases 49, 462476.Google Scholar
Moreno-Brito, V., Yanez-Gomez, C., Meza-Cervantez, P., Avila-Gonzalez, L., Rodriguez, M. A., Ortega-Lopez, J., Gonzalez-Robles, A. and Arroyo, R. (2005). A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin induced by iron. Cellular Microbiology 7, 245258.Google Scholar
Muller, M. (1997). Evolutionary origins of trichomonad hydrogenosomes. Parasitology Today 13, 166167.CrossRefGoogle ScholarPubMed
Muller, S., Liebau, E., Walter, R. D. and Krauth-Siegel, R. L. (2003). Thiol-based redox metabolism of protozoan parasites. Trends in Parasitology 19, 320328.Google Scholar
Mundodi, V., Kucknoor, A. S. and Alderete, J. F. (2008). Immunogenic and plasminogen-binding surface-associated alpha-enolase of Trichomonas vaginalis. Infection and Immunity 76, 523531.Google Scholar
Mundodi, V., Kucknoor, A. S., Chang, T. H. and Alderete, J. F. (2006). A novel surface protein of Trichomonas vaginalis is regulated independently by low iron and contact with vaginal epithelial cells. BMC Microbiology 6, 6.Google Scholar
Musatovova, O. and Alderete, J. F. (1999). The Trichomonas vaginalis phenotypically varying P270 immunogen is highly conserved except for numbers of repeated elements. Microbial Pathogenesis 27, 93104.Google ScholarPubMed
Rybicka, K., Honigberg, B. M. and Holt, S. C. (1972). Fine structure of the mastigont system in culture forms of Histomonas meleagridis (Smith). Protistologica 8, 107120.Google Scholar
Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.Google Scholar
Sanuki, J., Nakano, K., Tokoro, M., Nozaki, T., Okuzawa, E., Kobayashi, S. and Asai, T. (2001). Purification and identification of major soluble 40-kDa antigenic protein from Entamoeba histolytica: its application for serodiagnosis of asymptomatic amebiasis. Parasitology International 50, 7380.Google Scholar
Schuster, F. L. (1968). Ultrastructure of Histomonas meleagridis (Smith) Tyzzer, a parasitic amebo-flagelate. The Journal of Parasitology 54, 725737.Google Scholar
Tyzzer, E. E. (1920). The flagellate character and reclassification of the parasite producing ‘Blackhead’ in turkeys- Histomonas (gen. nov.) meleagridis (Smith). The Journal of Parasitology 6, 124131.Google Scholar
Wenrich, D. H. (1943). Observations on the morphology of Histomonas (Protozoa, Mastigophora) from phesants and chickens. Journal of Morphology 72, 279303.CrossRefGoogle Scholar
Zhao, X. and Siu, C. H. (1995). Colocalization of the homophilic binding site and the neuritogenic activity of the cell adhesion molecule L1 to its second Ig-like domain. Journal of Biological Chemistry 270, 2941329421.CrossRefGoogle ScholarPubMed